* Với giá trị nào của x thì các căn sau có nghĩa:
a.\(\sqrt{8x+2}\)
b.\(\sqrt{\dfrac{-5}{6-3x}}\)
* Tìm giá trị nhỏ nhất của:
A=\(x-2\sqrt{x-2}+3\)
cho biểu thức \(P=\dfrac{x^2+3x}{x^2-8x+16}:\left(\dfrac{x+4}{x}+\dfrac{1}{x-4}+\dfrac{19-x^2}{x^2-4x}\right)\)
a) rút gọn P
b) tính giá trị của P tại \(x=\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)
Giải phương trình
a) x2-7x+\(\sqrt{x^2-7x+8}\)= 12
b) \(\sqrt{3x^2+12x+16}+\sqrt{y^2-4y+13}=5\)
c) \(\sqrt{x-3}+\sqrt{5-x}=x^2-8x+18\)
Giải các phương trình sau:
a.\(3\sqrt{18x}-5\sqrt{8x}+4\sqrt{50x}=38\)
b.\(3\sqrt{12x}-2\sqrt{27x}+4\sqrt{3x}=8\)
c.\(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\)
Bài 3. Cho biểu thức : B = 1/(2sqrt(x) - 2) - 1/(2sqrt(x) + 2) + (sqrt(x))/(1 - x) A = (1 - (5 + sqrt(5))/(1 + sqrt(5)))((5 - sqrt(5))/(1 - sqrt(5)) - 1)
a) Tính A
b) Tìm ĐKXĐ rồi rút gọn biểu thức B;
c) Tính giá trị của B với x = 9
d) Tìm giá trị của x để |B| = A
Tính giá trị của đa thức \(\left(x^{31}-5x^{10}+3\right)^{2018}\)
tại x= 9-\(\dfrac{1}{\sqrt{\dfrac{9}{4}-\sqrt{5}}}+\dfrac{1}{\sqrt{\dfrac{9}{4}+\sqrt{5}}}\)
Cho biểu thức \(P=\dfrac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{\sqrt{x}-2}{1-\sqrt{x}};x\ge0,x\ne1\)
a) Rút gọn P.
b) Tính giá trị của P tại x thỏa mãn \(\left|2x-5\right|=3\)
c) Tìm các giá trị của x để P = 3.
d) Tìm các giá trị của x để \(P>\dfrac{1}{2}\).
e) Tìm các giá trị nguyên của x để P có giá trị nguyên.
Tìm giá trị của x để các biểu thức sau có nghĩa:
a)\(\sqrt{\dfrac{3x-1}{5}}\)
b)\(\sqrt{\dfrac{3}{15-2x}}\)
c) \(\sqrt{\dfrac{-2x}{x^2-3x+9}}\)
Bài 1. Tìm điều kiện để các biểu thức sau có nghĩa:
a. \(\sqrt{2+8x}\).
b. \(\sqrt{\dfrac{-1}{5}x+9}\)
c.\(\sqrt{11-7x}\)
Bài 2. Rút gọn các biểu thức sau:
a. \(\sqrt{48a}\) . \(\sqrt{3a}\) \(-2a\) với a \(\ge\) 0
b. \(\dfrac{1}{3}\sqrt{54}-3\sqrt{24}-\dfrac{\sqrt{66}}{\sqrt{11}}\)
Bài 3: Tìm x, biết:
a. \(\sqrt{\left(2x+3\right)^2}=3\)
b. \(\sqrt{4\left(x-2\right)}-4\sqrt{x-2}+\sqrt{9\left(x-2\right)}=4\)