Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
DM
Xem chi tiết
DT
1 tháng 8 2018 lúc 10:15

\(\left(x^2-2xy+y^2\right)+81\)

Bình luận (0)
H24
17 tháng 12 2018 lúc 17:49

em.........

bó tay 

Bình luận (0)
DM
Xem chi tiết
H24
1 tháng 8 2018 lúc 11:01

=(x-y)2-92

=(x-y-9)(x-y+9)

Bình luận (0)
HP
1 tháng 8 2018 lúc 11:10

b) \(5x^3+10x^2y+5xy^2=2\left(x^3+2x^2y+xy^2\right)\)

\(=2\left(x^3+x^2y+x^2y+xy^2\right)=2\left[x^2\left(x+y\right)+xy\left(x+y\right)\right]\)

=\(2\left(x^2+xy\right)\left(x+y\right)\)

Bình luận (0)
SK
Xem chi tiết
NH
29 tháng 6 2017 lúc 9:27

Phép chia các phân thức đại số

Bình luận (0)
NL
Xem chi tiết
H24
5 tháng 9 2017 lúc 19:53

a) \(5x^2\)\(\left(x-2y\right)\)\(-\)\(15x\)\(\left(x-2y\right)\)

\(=\left(x-2y\right)\left(5x^2-15x\right)\)

\(=5x\left(x-2y\right)\left(x-3\right)\)

b)  \(3\left(x-y\right)\)\(-\)\(5x\left(y-x\right)\)

\(=3\left(x-y\right)+5x\left(x-y\right)\)

\(=\left(x-y\right)\left(3+5x\right)\)

c)  \(10x\left(x-y\right)\)\(-\)\(8y\left(y-x\right)\)

\(=\)\(10x\left(x-y\right)+8y\left(x-y\right)\)

\(=\left(x-y\right)\left(10x+8y\right)\)

\(=2\left(5x+4\right)\left(x-y\right)\)

d)  \(x^2\)\(\left(x-5\right)\)\(+\)\(4\)\(\left(5-x\right)\)

\(=x^2\)\(\left(x-5\right)\)\(-\)\(4\left(x-5\right)\)

\(=\left(x-5\right)\left(x^2-4\right)\)

\(=\left(x-5\right)\left(x-2\right)\left(x-2\right)\)

Bình luận (0)
PT
5 tháng 9 2017 lúc 20:01

a) \(5x^2\left(x-2y\right)-15x\left(x-2y\right)\)

\(=\left(x-2y\right)\left(5x^2-15x\right)\)

\(=\left(x-2y\right)\left(x-3\right)5x\)

b)\(3\left(x-y\right)-5x\left(y-x\right)\)

\(=3\left(x-y\right)+5x\left(x-y\right)\)

\(=\left(3+5x\right)\left(x-y\right)\)

c)\(10x\left(x-y\right)-8y\left(y-x\right)\)

\(=10x\left(x-y\right)+8y\left(x-y\right)\)

\(=\left(10x+8y\right)\left(x-y\right)\)

\(=2\left(5x+4y\right)\left(x-y\right)\)

d)\(x^2\left(x-5\right)+4\left(5-x\right)\)

\(=x^2\left(x-5\right)-4\left(x-5\right)\)

\(=\left(x^2-4\right)\left(x-5\right)\)

\(=\left(x-2\right)\left(x+2\right)\left(x-5\right)\)

Bình luận (0)
CT
Xem chi tiết
NM
25 tháng 11 2021 lúc 22:15

\(ĐK:x\ge\dfrac{1}{5};y\ge\dfrac{3}{8}\)

\(PT\left(1\right)\Leftrightarrow\dfrac{3x^2-3y^2}{\sqrt{5x^2+2xy+2y^2}-\sqrt{2x^2+2xy+5y^2}}=3\left(x+y\right)\\ \Leftrightarrow3\left(x+y\right)\left(\dfrac{x-y}{\sqrt{5x^2+2xy+2y^2}-\sqrt{2x^2+2xy+5y^2}}-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+y=0\\\dfrac{x-y}{\sqrt{5x^2+2xy+2y^2}-\sqrt{2x^2+2xy+5y^2}}=1\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow x-y=\sqrt{5x^2+2xy+2y^2}-\sqrt{2x^2+2xy+5y^2}\\ \Leftrightarrow\left(x-y\right)=\dfrac{3\left(x^2-y^2\right)}{\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}}\\ \Leftrightarrow\left(x-y\right)\left[\dfrac{3\left(x+y\right)}{\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}}-1\right]=0\)

\(\Leftrightarrow x=y\)

Với \(x+y=0\Leftrightarrow x=-y\), thay vào PT 2

\(\Leftrightarrow3\left(-y\right)\left(y-7\right)+10=\sqrt{10\left(-y\right)-2}+2\sqrt{8y-3}\\ \Leftrightarrow3y\left(7-y\right)+10=\sqrt{-10y-2}+2\sqrt{8y-3}\)

ĐK: \(\left\{{}\begin{matrix}-10y-2\ge0\\8y-3\ge0\end{matrix}\right.\Leftrightarrow y\in\varnothing\)

Với \(x-y=0\Leftrightarrow x=y\), thay vào PT 2

\(\Leftrightarrow3x^2-21x+10=\sqrt{10x-2}+2\sqrt{8x-3}\left(x\ge\dfrac{3}{8}\right)\\ \Leftrightarrow3x^2-24x+9=\sqrt{10x-2}-\left(x+1\right)+2\sqrt{8x-3}-2x\)

\(\Leftrightarrow3\left(x^2-8x+3\right)=\dfrac{-x^2+8x-3}{\sqrt{10x-2}+\left(x+1\right)}+\dfrac{2\left(-x^2+8x-3\right)}{\sqrt{8x-3}+x}\\ \Leftrightarrow\left(x^2-8x+3\right)\left(3+\dfrac{1}{\sqrt{10x-2}+x+1}+\dfrac{2}{\sqrt{8x-3}+x}\right)=0\)

Dễ thấy ngoặc lớn vô nghiệm với \(x\ge\dfrac{3}{8}>0\)

\(\Leftrightarrow x^2-8x+3=0\\ \Leftrightarrow\left[{}\begin{matrix}x=4+\sqrt{13}\left(n\right)\\x=4-\sqrt{13}\left(n\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=4+\sqrt{13}\\y=4-\sqrt{13}\end{matrix}\right.\)

Vậy HPT có nghiệm \(\left(x;y\right)\in\left\{\left(4+\sqrt{13};4+\sqrt{13}\right);\left(4-\sqrt{13};4-\sqrt{13}\right)\right\}\)

Bình luận (1)
GX
Xem chi tiết
AW
28 tháng 12 2018 lúc 18:29

a,\(2xy+9-x^2-y^2\)

Bình luận (0)
NT
6 tháng 12 2022 lúc 22:51

a: =9-(x-y)^2

=(3-x+y)(3+x-y)

c: =x^2-2x-3x+6

=(x-2)(x-3)

Bình luận (0)
DC
Xem chi tiết
HA
Xem chi tiết
NL
23 tháng 6 2017 lúc 7:21

a)

\(5x^2+9y^2-12xy-6x+9=0\)

\(\Leftrightarrow\left(4x^2-12xy+9y^2\right)+\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow\left(2x-3y\right)^2+\left(x-3\right)^2=0\)

Vì \(\hept{\begin{cases}\left(2x-3y\right)^2\ge0\\\left(x-3\right)^2\ge0\end{cases}}\)nên

\(\Rightarrow\hept{\begin{cases}\left(2x-3y\right)^2=0\\\left(x-3\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}2x-3y=0\\x-3=0\end{cases}\Rightarrow}\hept{\begin{cases}x=3\\y=2\end{cases}}}\)

Vậy x=3 và y=2

Bình luận (0)
NL
23 tháng 6 2017 lúc 7:28

b)

\(2x^2+2y^2+2xy-10x-8y+41=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2-10x+25\right)+\left(y^2-8y+16\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x-5\right)^2+\left(y-4\right)^2=0\)\(\)

Vì \(\hept{\begin{cases}\left(x+y\right)^2\ge0\\\left(x-5\right)^2\ge0\\\left(y-4\right)^2\ge0\end{cases}}\)nên

\(\Rightarrow\hept{\begin{cases}\left(x+y\right)^2=0\\\left(x-5\right)^2=0\\\left(y-4\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=0\\x-5=0\\y-4=0\end{cases}\Rightarrow}\hept{\begin{cases}x+y=0\\x=5\\y=4\end{cases}}}\)( VÔ nghiệm vì \(x+y\ne0\))

Vậy không có giá trị x, y nào thỏa mãn đề bài

Bình luận (0)
HA
Xem chi tiết
NL
23 tháng 6 2017 lúc 8:04

Bài này giải rồi mà

Bình luận (0)