Những câu hỏi liên quan
PZ
Xem chi tiết
HT
Xem chi tiết
BM
Xem chi tiết
H24
15 tháng 1 2018 lúc 21:16

a) Thay f(3) vào hàm số ta có :

y=f(3)=4.32-5=31

Thay f(-1/2) vào hàm số ta có :

y=f(-1/2)=4.(-1/2)2-5=-4

b) Thay x=-1 vào hàm số ta có : 4.(-1)2-5=-1

=> f(-1) với x=-1

Bình luận (0)
BM
15 tháng 1 2018 lúc 21:18

cam on nhe

Bình luận (0)
NQ
24 tháng 11 2021 lúc 16:29

tfyjtftftfkyh,hjgjfyhfj,fjghjgjfyfyjfjyhfjhyf,hfykfyffuyfh,jyfhjhjhfhjhhhhhcghgiufyf

Bình luận (0)
 Khách vãng lai đã xóa
HH
Xem chi tiết
NT
25 tháng 7 2021 lúc 20:24

Ta có: \(-x^2-4x-5\)

\(=-\left(x^2+4x+5\right)\)

\(=-\left(x^2+4x+4\right)-1\)

\(=-\left(x+2\right)^2-1< 0\forall x\)

Bình luận (0)
HN
Xem chi tiết
LG
24 tháng 6 2019 lúc 13:40

\(3x^2-4x+50\)

\(=3\left(x^2-\frac{4}{3}x+\frac{4}{9}\right)+\frac{146}{3}\)

\(=3\left(x-\frac{2}{3}\right)^2+\frac{146}{3}\ge\frac{146}{3}>0\) (đpcm)

Bình luận (1)
TC
Xem chi tiết
TM
10 tháng 7 2017 lúc 23:32

\(\left(x-3\right)\left(4x+5\right)+19=4x^2-12x+5x-15+19=4x^2-7x+4\)

\(=\left(2x\right)^2-2.\frac{7}{4}.2x+\frac{49}{16}+\frac{15}{16}=\left(2x-\frac{7}{4}\right)^2+\frac{15}{16}\)

Vì \(\left(2x-\frac{7}{4}\right)^2\ge0\Rightarrow\left(2x-\frac{7}{4}\right)^2+\frac{15}{16}\ge\frac{15}{16}>0\Leftrightarrow\left(x-3\right)\left(4x+5\right)+19>0\)(đpcm)

Bình luận (0)
LV
Xem chi tiết
KS
7 tháng 12 2019 lúc 22:26

A=x2-6x+10

A=x2-2*3x+32+1

A=(x-3)2+1

Ta có: (x-3)2> và = 0 với mọi x

Dấu "=" xảy ra=>(x-3)^2=0<=>x-3=0<=>x=3

=>A> và = 1 > 0 với mọi x

Vậy A luôn dương với mọi x

B=4x^2+4x+1+2

B=(2x+1)^2+2

Ta có: (2x+1)^2 > và = 0 với mọi x

Dấu "=" xảy ra<=> (2x+1)^2=0<=>2x+1=0<=>x=-1/2

=>B> và = 2 >0 với mọi x

Vậy B luôn dương với mọi x

Bình luận (0)
 Khách vãng lai đã xóa
NT
7 tháng 12 2019 lúc 22:33

a) Đa thức A=x(x-6)+10

Ta có: \(A=x\left(x-6\right)+10\)

\(=x^2-6x+10=x^2-6x+9+1\)

\(=\left(x-3\right)^2+1\)

Ta có: \(\left(x-3\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-3\right)^2+1\ge1>0\forall x\)

hay \(A=x\left(x-6\right)+10>0\forall x\)(đpcm)

b) Đa thức \(B=4x^2-4x+3\)

Ta có: \(B=4x^2-4x+3\)

\(=\left(2x\right)^2-2\cdot2x\cdot1+1+2\)

\(=\left(2x-1\right)^2+2\)

Ta có: \(\left(2x-1\right)^2\ge0\forall x\)

hay \(\left(2x-1\right)^2+2\ge2>0\forall x\)

Vậy: \(B=4x^2-4x+3\)>0\(\forall x\in R\)(đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
DD
Xem chi tiết
NT
5 tháng 7 2021 lúc 20:42

a) Ta có: \(x^2+4x+4=x^2-6x+9\)

\(\Leftrightarrow4x+4=-6x+9\)

\(\Leftrightarrow4x+6x=9-4\)

\(\Leftrightarrow10x=5\)

hay \(x=\dfrac{1}{2}\)

b) Ta có: \(B=-x^2+2x-2\)

\(=-\left(x^2-2x+2\right)\)

\(=-\left(x^2-2x+1\right)-1\)

\(=-\left(x-1\right)^2-1< 0\forall x\)

Bình luận (0)
KH
5 tháng 7 2021 lúc 20:43

Bài 1: 

\(pt\Leftrightarrow10x=5\Leftrightarrow x=\dfrac{1}{2}\)

Vậy \(S=\left\{\dfrac{1}{2}\right\}\)

Bài 2:

\(B=x^2+2x-2\) 

Lấy \(x=1\Rightarrow B=1>0\)

Vậy \(B=x^2+2x-2< 0\forall x\in R\) ( vô lí)

Bình luận (0)
KT
5 tháng 7 2021 lúc 21:09

a) Ta có: x2+4x+4=x2−6x+9

 

⇔4x+4=−6x+9

 

⇔4x+6x=9−4

 

⇔10x=5

 

hay 

Bình luận (0)
HB
Xem chi tiết