Những câu hỏi liên quan
PB
Xem chi tiết
CT
5 tháng 10 2017 lúc 11:00

Bình luận (0)
ED
Xem chi tiết
DQ
16 tháng 8 2021 lúc 18:22

a) <=> 4sinxcosx -(2cos2x-1)=7sinx+2cosx-4

<=> 2cos2x+(2-4sinx)cosx+7sinx-5=0

- sinx=1 => 2cos2x-2cosx+2=0 

pt trên vn

Bình luận (0)
 Khách vãng lai đã xóa
DQ
16 tháng 8 2021 lúc 18:27

b) <=> 2sinxcosx-1+2sin2x+3sinx-cosx-1=0

<=> cos(2sinx-1)+2sin2x+3sinx-2=0

<=> cosx(2sinx-1)+(2sinx-1)(sinx+2)=0

<=> (2sinx-1)(cosx+sinx+2)=0

<=> sinx=1/2 hoặc cosx+sinx=-2(vn)

<=> x= \(\frac{\pi}{6}+k2\pi\) hoặc \(x=\frac{5\pi}{6}+k2\pi\left(k\in Z\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
LC
Xem chi tiết
NL
15 tháng 7 2020 lúc 16:57

a/

\(\Leftrightarrow\frac{3}{\sqrt{13}}sinx-\frac{2}{\sqrt{13}}cosx=\frac{2}{\sqrt{13}}\)

Đặt \(cosa=\frac{3}{\sqrt{13}}\) với \(0< a< \pi\)

\(\Rightarrow sinx.cosa-cosx.sina=sina\)

\(\Leftrightarrow sin\left(x-a\right)=sina\)

\(\Rightarrow\left[{}\begin{matrix}x-a=a+k2\pi\\x-a=\pi-a+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2a+k2\pi\\x=\pi+k2\pi\end{matrix}\right.\)

Bình luận (0)
NL
15 tháng 7 2020 lúc 16:59

b/

\(\Leftrightarrow cosx.\frac{1}{\sqrt{17}}+sinx.\frac{4}{\sqrt{17}}=-\frac{1}{\sqrt{17}}\)

Đặt \(cosa=\frac{1}{\sqrt{17}}\) với \(0< a< \pi\)

\(\Rightarrow cosx.cosa+sinx.sina=-cosa\)

\(\Leftrightarrow cos\left(x-a\right)=cos\left(\pi-a\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x-a=\pi-a+k2\pi\\x-a=a-\pi+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\pi+k2\pi\\x=2a-\pi+k2\pi\end{matrix}\right.\)

Bình luận (0)
NL
15 tháng 7 2020 lúc 17:01

c/

\(\Leftrightarrow\frac{\sqrt{3}}{\sqrt{19}}cosx+\frac{4}{\sqrt{19}}sinx=\frac{\sqrt{3}}{\sqrt{19}}\)

Đặt \(cosa=\frac{\sqrt{3}}{\sqrt{19}}\) với \(0< a< \pi\)

\(\Rightarrow cosx.cosa+sinx.sina=cosa\)

\(\Leftrightarrow cos\left(x-a\right)=cosa\)

\(\Rightarrow\left[{}\begin{matrix}x-a=a+k2\pi\\x-a=-a+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2a+k2\pi\\x=k2\pi\end{matrix}\right.\)

Bình luận (0)
NN
Xem chi tiết
NA
Xem chi tiết
NL
6 tháng 10 2020 lúc 23:01

a.

\(\Leftrightarrow sin2x+cos2x=3sinx+cosx+2\)

\(\Leftrightarrow2sinx.cosx-3sinx+2cos^2x-cosx-3=0=0\)

\(\Leftrightarrow sinx\left(2cosx-3\right)+\left(cosx+1\right)\left(2cosx-3\right)=0\)

\(\Leftrightarrow\left(sinx+cosx+1\right)\left(2cosx-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=-1\\2cosx-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\\cosx=\frac{3}{2}\left(vn\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=-\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
6 tháng 10 2020 lúc 23:03

b.

\(\Leftrightarrow1+sinx+cosx+2sinx.cosx+2cos^2x-1=0\)

\(\Leftrightarrow sinx\left(2cosx+1\right)+cosx\left(2cosx+1\right)=0\)

\(\Leftrightarrow\left(sinx+cosx\right)\left(2cosx+1\right)=0\)

\(\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\left(2cosx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{4}\right)=0\\cosx=-\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=\frac{2\pi}{3}+k2\pi\\x=-\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
6 tháng 10 2020 lúc 23:05

c.

\(\Leftrightarrow\left(2cosx-1\right)\left(2sinx+cosx\right)=2sinx.cosx-sinx\)

\(\Leftrightarrow\left(2cosx-1\right)\left(2sinx+cosx\right)-sinx\left(2cosx-1\right)=0\)

\(\Leftrightarrow\left(2cosx-1\right)\left(2sinx+cosx-sinx\right)=0\)

\(\Leftrightarrow\left(2cosx-1\right)\left(sinx+cosx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2cosx-1=0\\sinx+cosx=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=\frac{1}{2}\\sin\left(x+\frac{\pi}{4}\right)=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
3 tháng 11 2018 lúc 2:38

3sinx – 4cosx = 1 ⇔ 3/5sinx - 4/5cosx = 1/5.

⇔ sin(x – α) = 1/5 (với cosα = 3/5 , sinα = 4/5)

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Bình luận (0)
MT
Xem chi tiết
NL
15 tháng 7 2020 lúc 11:27

ĐKXĐ; ...

\(\Leftrightarrow\frac{3}{5}sinx+\frac{4}{5}cosx-1=\frac{1}{5}\left(4tanx-3\right)^2\)

\(\Leftrightarrow sin\left(x+a\right)-1=\frac{1}{5}\left(4tanx-3\right)^2\)

(Trong đó \(a\in\left(0;\pi\right)\) sao cho \(cosa=\frac{3}{5}\))

Do \(\left\{{}\begin{matrix}sin\left(x+a\right)-1\le0\\\left(4tanx-3\right)^2\ge0\end{matrix}\right.\) \(\forall a;x\) nên đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}sin\left(x+a\right)=1\\4tanx-3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}3sinx+4cosx=5\\4sinx-3cosx=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}sinx=\frac{3}{5}\\cosx=\frac{4}{5}\end{matrix}\right.\) \(\Rightarrow x=arcsin\left(\frac{3}{5}\right)+k2\pi\)

Bình luận (1)
PB
Xem chi tiết
CT
2 tháng 9 2018 lúc 13:12

x   =   π 8   +   k π 2 ;   π 12   +   k π ;   k ∈ Z

Bình luận (0)