Bài 3: Một số phương trình lượng giác thường gặp

MA

Giải phương trình:

a,\(1+2Sinx=2Cosx\)

b,\(4Cosx-3Sinx=3\)

c,\(3Cos3x+4Sin3x=5\)

LH
30 tháng 6 2021 lúc 13:57

a,Pt \(\Leftrightarrow cosx-sinx=\dfrac{1}{2}\)

\(\Leftrightarrow\sqrt{2}cos\left(x+\dfrac{\pi}{4}\right)=\dfrac{1}{2}\)

\(\Leftrightarrow cos\left(x+\dfrac{\pi}{4}\right)=\dfrac{1}{2\sqrt{2}}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+arc.cos\left(\dfrac{1}{2\sqrt{2}}\right)+k2\pi\\x=-\dfrac{\pi}{4}-arc.cos\left(\dfrac{1}{2\sqrt{2}}\right)+k2\pi\end{matrix}\right.\) ,\(k\in Z\)

b) Pt \(\Leftrightarrow\dfrac{4}{5}cosx-\dfrac{3}{5}sinx=\dfrac{3}{5}\)

Đặt \(cosa=\dfrac{4}{5}\Rightarrow sina=\dfrac{3}{5}\)

Pttt:\(cosx.cosa-sina.sinx=\dfrac{3}{5}\)

\(\Leftrightarrow cos\left(x+a\right)=\dfrac{3}{5}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-a+arc.cos\left(\dfrac{3}{5}\right)+2k\pi\\x=-a-arc.cos\left(\dfrac{3}{5}\right)+2k\pi\end{matrix}\right.\)(\(k\in Z\))

Vậy...

c) Pt\(\Leftrightarrow\dfrac{3}{5}cos3x+\dfrac{4}{5}.sin3x=1\)

Đặt \(cosa=\dfrac{3}{5}\Rightarrow sina=\dfrac{4}{5}\)

Pttt:\(cos3x.cosa+sin3a.sina=1\)

\(\Leftrightarrow cos\left(3x-a\right)=1\)

\(\Leftrightarrow x=\dfrac{a}{3}+\dfrac{k2\pi}{3}\)(\(k\in Z\))

Vậy...

Bình luận (2)
LD
30 tháng 6 2021 lúc 14:21

1)\(1+2sinx=2cosx\)

\(\Leftrightarrow cosx-sinx=\dfrac{1}{2}\)

\(\Leftrightarrow\left(cosx-sinx\right)^2=\dfrac{1}{4}\)

\(\Leftrightarrow cosx^2+sinx^2-2cosxsinx=\dfrac{1}{4}\)

\(\Leftrightarrow1-2cosxsinx=\dfrac{1}{4}\)

\(\Leftrightarrow2cosxsinx=\dfrac{3}{4}\)

\(\Leftrightarrow sin2x=\dfrac{3}{4}\)

\(\Rightarrow\left\{{}\begin{matrix}x=arcsin\dfrac{3}{8}+k\pi\\x=\pi-arcsin\dfrac{3}{8}+k\pi\end{matrix}\right.\) \(\left(K\in Z\right)\)

b) \(4cosx-3sinx=3\)

\(\Leftrightarrow\dfrac{4}{5}cosx-\dfrac{3}{5}sinx=\dfrac{3}{5}\)

Đặt \(cosa=\dfrac{3}{5},sina=\dfrac{4}{5}\)

Khi đó:

\(sinacosx-cosasinx=\dfrac{3}{5}\)

\(\Leftrightarrow sin\left(a-x\right)=\dfrac{3}{5}\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-x=arcsin\dfrac{3}{5}+k2\pi\\a-x=\pi-arcsin\dfrac{3}{5}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=a-arcsin\dfrac{3}{5}+k2\pi\\x=a-\pi-arcsin\dfrac{3}{5}+k2\pi\end{matrix}\right.\) \(\left(k\in Z\right)\)

3)\(3cos3x+4sin3x=5\)

\(\Leftrightarrow\dfrac{3}{5}cos3x+\dfrac{4}{5}sin3x=1\)

Đặt \(sina=\dfrac{3}{5},cosa=\dfrac{4}{5}\)

khi đó: \(sinacos3x+cosasin3x=1\)

\(\Leftrightarrow sin\left(a+3x\right)=\dfrac{\pi}{2}\)

\(\Leftrightarrow3x=\dfrac{\pi}{2}-a+k2\pi\)

\(\Leftrightarrow x=\dfrac{\pi}{6}-\dfrac{1}{3}a+k\dfrac{2}{3}\pi\),\(k\in Z\)

Chúc bạn học tốt^^

Bình luận (0)

Các câu hỏi tương tự
LC
Xem chi tiết
NS
Xem chi tiết
MN
Xem chi tiết
MN
Xem chi tiết
NV
Xem chi tiết
H24
Xem chi tiết
NS
Xem chi tiết
LN
Xem chi tiết