Những câu hỏi liên quan
HM
Xem chi tiết
LL
15 tháng 11 2021 lúc 19:38

Bài 1:

Ta có: \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\left(a^3+3a^2b+3ab^2+b^3\right)+c^3-3a^2b-3ab^2-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\left(do.a+b+c\ne0\right)\)

\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(a-c\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow a=b=c\)

\(M=\dfrac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\dfrac{3a^2}{\left(3a\right)^2}=\dfrac{3a^2}{9a^2}=\dfrac{1}{3}\)

Bình luận (0)
LL
15 tháng 11 2021 lúc 19:40

Bài 2:

a) \(=\dfrac{x\left(x^2+x-6\right)}{x\left(x^2-4\right)}=\dfrac{x\left(x-2\right)\left(x+3\right)}{x\left(x-2\right)\left(x+2\right)}=\dfrac{x+3}{x+2}\)

b) \(=\dfrac{x\left(x+1\right)+7\left(x+1\right)}{x\left(x^2+2x+1\right)}=\dfrac{\left(x+1\right)\left(x+7\right)}{x\left(x+1\right)^2}=\dfrac{x+7}{x\left(x+1\right)}=\dfrac{x+7}{x^2+x}\)

Bình luận (0)
LD
Xem chi tiết
LH
12 tháng 4 2017 lúc 14:49

-4^2 hay -4x^2

Bình luận (1)
LD
12 tháng 4 2017 lúc 22:04

Giúp mình giả câu b) ấy mọi người TT^TT

Bình luận (0)
KH
Xem chi tiết
HM
Xem chi tiết
NM
15 tháng 11 2021 lúc 20:49

\(a,=\dfrac{x^4\left(x-2\right)+2x^2\left(x-2\right)-3\left(x-2\right)}{x+4}\\ =\dfrac{\left(x-2\right)\left(x^4+2x^2-3\right)}{x+4}\\ =\dfrac{\left(x-2\right)\left(x^4-x^2+3x^2-3\right)}{x+4}\\ =\dfrac{\left(x-2\right)\left(x-1\right)\left(x^2+3\right)}{x+4}\)

\(b,=\dfrac{x^4-3x^2-x^2+3}{x^4-x^2+7x^2-7}=\dfrac{\left(x^2-3\right)\left(x^2-1\right)}{\left(x^2+7\right)\left(x^2-1\right)}=\dfrac{x^2-3}{x^2+7}\\ c,=\dfrac{\left(x^3-1\right)\left(x+1\right)}{x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)}\\ =\dfrac{\left(x-1\right)\left(x^2+x+1\right)\left(x+1\right)}{\left(x^2+1\right)\left(x^2+x+1\right)}=\dfrac{x^2-1}{x^2+1}\)

Bình luận (0)
NL
Xem chi tiết
KD
28 tháng 9 2022 lúc 20:42

a) A= 3.(x2-2xy+y2)- 2. (x2+2xy+y2) - x2-y2

A= 3.x2-2xy+y2-2. x2+2xy+y2-x2-y2

 

Bình luận (0)
KH
Xem chi tiết
KH
Xem chi tiết
H24
Xem chi tiết
NT
23 tháng 7 2022 lúc 20:51

b: \(\Leftrightarrow32x^5+1-32x^5+1=2\)

=>2=2(luôn đúng)

a: \(\Leftrightarrow\left[\left(x-3\right)^2-\left(x+3\right)^2\right]\left[\left(x-3\right)^2+\left(x+3\right)^2\right]+24x^3=216\)

\(\Leftrightarrow-12x\left(2x^2+18\right)+24x^3=216\)

=>-216x=216

hay x=-1

Bình luận (0)
H24
Xem chi tiết
TN
14 tháng 7 2018 lúc 17:24

2.a) \(8x^2-4x=0\Rightarrow4x\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}4x=0\\2x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\end{matrix}\right.\)

b) \(5x\left(x-3\right)+7\left(x-3\right)=0\Rightarrow\left(x-3\right)\left(5x+7\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-3=0\\5x+7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=-1.4\end{matrix}\right.\)

c) \(2x^2=x\Rightarrow2x^2-x=0\Rightarrow x\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\2x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=0.5\end{matrix}\right.\)

d) \(x^3=x^5\Rightarrow x^3-x^5=0\Rightarrow x^3\left(1-x^2\right)=0\\ \Rightarrow x^3\left(1-x\right)\left(1+x\right)=0\Rightarrow\left[{}\begin{matrix}x^3=0\\1-x=0\\1+x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

e) \(x^2\left(x+1\right)+2x\left(x+1\right)=0\)

\(\Rightarrow\left(x+1\right)\left(x^2+2x\right)=0\Rightarrow\left(x+1\right)x\left(x+2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x+1=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=-2\end{matrix}\right.\)

g. \(x\left(2x-3\right)-2\left(3-2x\right)=0\)

\(\Rightarrow x\left(2x-3\right)+2\left(2x-3\right)=0\\ \Rightarrow\left(2x-3\right)\left(x+2\right)=0\\ \Rightarrow\left[{}\begin{matrix}2x-3=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1.5\\x=-2\end{matrix}\right.\)

Bình luận (0)