HM

1. Cho \(a^3+b^3+c^3=3abc\) (a+b+c ≠0)

Tính giá trị biểu thức:

\(M=\dfrac{a^2+b^2+c^2}{\left(a+b+c\right)^2}\)

2. Rút gọn

a) \(\dfrac{x^3+x^2-6x}{x^3-4x}\)

b) \(\dfrac{x^2+8x+7}{x^3+2x^2+x}\)

LL
15 tháng 11 2021 lúc 19:38

Bài 1:

Ta có: \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\left(a^3+3a^2b+3ab^2+b^3\right)+c^3-3a^2b-3ab^2-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\left(do.a+b+c\ne0\right)\)

\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(a-c\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow a=b=c\)

\(M=\dfrac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\dfrac{3a^2}{\left(3a\right)^2}=\dfrac{3a^2}{9a^2}=\dfrac{1}{3}\)

Bình luận (0)
LL
15 tháng 11 2021 lúc 19:40

Bài 2:

a) \(=\dfrac{x\left(x^2+x-6\right)}{x\left(x^2-4\right)}=\dfrac{x\left(x-2\right)\left(x+3\right)}{x\left(x-2\right)\left(x+2\right)}=\dfrac{x+3}{x+2}\)

b) \(=\dfrac{x\left(x+1\right)+7\left(x+1\right)}{x\left(x^2+2x+1\right)}=\dfrac{\left(x+1\right)\left(x+7\right)}{x\left(x+1\right)^2}=\dfrac{x+7}{x\left(x+1\right)}=\dfrac{x+7}{x^2+x}\)

Bình luận (0)

Các câu hỏi tương tự
DV
Xem chi tiết
DV
Xem chi tiết
DV
Xem chi tiết
NO
Xem chi tiết
ST
Xem chi tiết
VP
Xem chi tiết
HM
Xem chi tiết
H24
Xem chi tiết
DV
Xem chi tiết