Bài: Cho 3x-2y/4=2z-4x/3=4y-3z/2. CMR: x/2=y/3=z/4
Cho 3x-2y/4=2z-4x/3=4y-3z/2. CMR : x/2=y/3=z/4
Cho: 3x -2y/4=2z-4x/3=4y-3z/2
cmr: x/2=y/3=z/4
Cho 3x-2y/4 = 2z-4x/3 = 4y-3z/2. CMR: x/2 = y/3 = z/4
Cho x+16/9 = y-25/16 = z+9/25 và 2x^3-1 = 15. Tìm x, y, z
Cho \(\dfrac{3x-2y}{4}=\dfrac{4y-3z}{2}=\dfrac{2z-4x}{3}\) và \(x-2y+3z=8\)
Tìm x, y, z
\(\dfrac{3x-2y}{4}=\dfrac{4y-3z}{2}=\dfrac{2z-4x}{3}=\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}=\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{29}=0\\ \Leftrightarrow\left\{{}\begin{matrix}3x-2y=0\\2z-4x=0\\4y-3z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{y}{3}=\dfrac{z}{4}\\\dfrac{z}{4}=\dfrac{x}{2}\end{matrix}\right.\\ \Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x-2y+3z}{2-6+12}=\dfrac{8}{8}=1\\ \Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\\z=4\end{matrix}\right.\)
Cho (3x-2y)/4=(2z-4x)/3=(4y-3z)/2 và x+y-z=2
vào chtt tick nha bạn hiền
Cho 3x-2y/4=2z-4x/3=4y-3z/2. C/m x/2=y/3=z/4
cho 3x-2y/ 4=2z- 4x/3= 4y-3z/2 Chứng minh rằng x/2=y/3= z/4
Cho 3x-2y/4 = 2z-4x/3 = 4y-3z/2. Chứng minh rằng: x/2 = y/3 = z/4
(3x-2y)/4 = (2z-4x)/3 = (4y-3z)/2 =
= (12x-8y)/16 = (6z-12x)/9 = (8y-6z)/4 = (12x-8y + 6z-12x + 8y-6z)/(16+9+4) = 0
<=>
{12x - 8y = 0
{6z - 12x = 0
{8y - 6z = 0
<=>
{x/2 = y/3
{z/4 = x/2
{y/3 = z/4
<=> x/2 = y/3 = z/4
Học tốt!
Cho 3x - 2y/4 = 2z - 4x/3 = 4y - 3z/2. Chứng minh rằng: x/2 = y/3 = z/4
Vì \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)
\(\Rightarrow\frac{4\left(3x-2y\right)}{16}=\frac{3\left(2z-4x\right)}{9}=\frac{2\left(4y-3z\right)}{4}\)
\(\Rightarrow\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\Rightarrow\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}\)
\(=\frac{12x-8y+6z-12x+8y-6z}{16+9+4}\)
\(=\frac{\left(12x-12x\right)+\left(8y-8y\right)+\left(6z-6z\right)}{16+9+4}\)
\(=\frac{0}{16+9+4}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x-2y=0\\2z-4x=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3x=2y\\2z=4x\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{2}=\frac{y}{3}\\\frac{x}{2}=\frac{z}{4}\end{matrix}\right.\)
\(\Leftrightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\left(đpcm\right)\)