Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
H24
Xem chi tiết
H24
26 tháng 7 2021 lúc 14:22

Đây nhé! Tích giúp c nhaundefined

Bình luận (2)
NV
Xem chi tiết
NH
Xem chi tiết
DN
Xem chi tiết
NT
23 tháng 8 2021 lúc 20:55

1: Ta có: \(a^2+b^2+c^2\)

\(=\left(a+b+c\right)^2-2\cdot\left(ab+bc+ca\right)\)

\(=5^2-2\cdot174=-323\)

Bình luận (0)
PH
Xem chi tiết
TT
Xem chi tiết
TH
21 tháng 6 2023 lúc 10:54

Ta chọn abc sao cho

a^2 b^2 +b^2 c^2=(c^2-ab)tất cả mũ 2

 => c = a + b

ta chọn c = a + b thì :

 a^2 b^2+b^2 c^2+c^2 a^2=(b^2+a^2+ab)^2

Bình luận (0)
TT
Xem chi tiết
H9
21 tháng 6 2023 lúc 8:19

Ta chọn a, b, c sao cho: 

\(a^2b^2+b^2c^2+c^2a^2=\left(c^2-ab\right)^2\)

\(\Leftrightarrow c=a+b\)

Khi đó ta chọn: \(c=a+b\) thì:

\(a^2b^2+b^2c^2+c^2a^2=\left(b^2+a^2+ab\right)^2\)(đpcm)

Bình luận (0)
BL
21 tháng 6 2023 lúc 9:50

Ta chọn abc sao cho

a^2 b^2 +b^2 c^2=(c^2-ab)tất cả mũ 2

c=a+b

ta chọn c=a+b thì 

a^2 b^2+b^2 c^2+c^2 a^2=(b^2+a^2+ab)^2

 

Bình luận (0)
H24
Xem chi tiết
LH
11 tháng 1 2022 lúc 22:05

Ta có a+b+c=0⇔(a+b+c)2=0⇔a2+b2+c2+2(ab+bc+ac)=0a+b+c=0⇔(a+b+c)2=0⇔a2+b2+c2+2(ab+bc+ac)=0

+) Nếu a2+b2+c2=2a2+b2+c2=2 thì ab+bc+ac=−22=−1⇔(ab+bc+ac)2=1⇔a2b2+b2c2+c2a2+2abc(a+b+c)=1ab+bc+ac=−22=−1⇔(ab+bc+ac)2=1⇔a2b2+b2c2+c2a2+2abc(a+b+c)=1

⇔a2b2+b2c2+c2a2=1⇔a2b2+b2c2+c2a2=1

Ta có : (a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+c2a2)=4(a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+c2a2)=4

⇔a4+b4+c2+2=4⇔a4+b4+c4=2⇔a4+b4+c2+2=4⇔a4+b4+c4=2

+ Nếu a2+b2+c2=1a2+b2+c2=1 làm tương tự

Bình luận (0)
VH
Xem chi tiết
AH
20 tháng 2 2022 lúc 13:26

Lời giải:

PT $\Leftrightarrow (a^2+b^2)^2-2(a^2+b^2)c^2+c^4-a^2b^2=0$

$\Leftrightarrow (a^2+b^2-c^2)^2-(ab)^2=0$

$\Leftrightarrow (a^2+b^2-c^2-ab)(a^2+b^2-c^2+ab)=0$

$\Rightarrow a^2+b^2-c^2-ab=0$ hoặc $a^2+b^2-c^2+ab=0$

Áp dụng định lý cosin:

Nếu $a^2+b^2-c^2-ab=0$

$\cos C=\frac{a^2+b^2-c^2}{2ab}=\frac{a^2+b^2-c^2}{2(a^2+b^2-c^2)}=\frac{1}{2}$

$\Rightarrow \widehat{C}=60^0$

Nếu $a^2+b^2-c^2+ab=0$

$\cos C=\frac{-1}{2}\Rightarrow \widehat{C}=120^0$

 

Bình luận (0)
ND
Xem chi tiết
LL
10 tháng 7 2017 lúc 18:56

( ab + bc + ca )^2 = a^2b^2 + b^2c^2 +c^2a^2 + 2abc( a + b + c )

                          =a^2b^2 + b^2c^2 + c^2a^2 + 2abc.0 ( vì a + b + c = 0)

                          =a^2b^2 + b^2c^2 + c^2a^2

Bình luận (0)