Tìm GTNN, GTLN của \(\frac{5-2m}{m^2+2}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm GTLN, GTNN của P=\(\frac{4m^2+2m+4}{m^2+1}\)
Tìm GTLN, GTNN của P=\(\frac{4m^2+2m+4}{m^2+1}\)
Tìm GTLN và GTNN của: \(S=\dfrac{2m^2+7m+23}{m^2+2m+10}\) (m là tham số thực)
\(S=\dfrac{2m^2+7m+23}{m^2+2m+10}\Rightarrow Sm^2+2Sm+10S=2m^2+7m+23\)
\(\Leftrightarrow\left(S-2\right)m^2+\left(2S-7\right)m+10S-23=0\)
\(\Delta=\left(2S-7\right)^2-4\left(S-2\right)\left(10S-23\right)\ge0\)
\(\Leftrightarrow4S^2-16S+15\le0\)
\(\Rightarrow\dfrac{3}{2}\le S\le\dfrac{5}{2}\)
\(S_{min}=\dfrac{3}{2}\) khi \(m=-4\)
\(S_{max}=\dfrac{5}{2}\) khi \(m=2\)
Tìm GTLN của biểu thức:\(A=\frac{2m^2-4m+5}{m^2-2m+2}\)
Ta có: \(A=\frac{2m^2-4m+5}{m^2-2m+2}\)
\(=\frac{2m^2-4m+2+3}{m^2-2m+1+1}=\frac{2\left(m^2-2m+1\right)+3}{\left(m^2-2m+1\right)+1}\)
\(=\frac{2\left(m-1\right)^2+3}{\left(m-1\right)^2+1}\ge\frac{3}{1}=3\) (do \(\left(m-1\right)^2\ge0\))
Dấu "=" xảy ra \(\Leftrightarrow m-1=0\Leftrightarrow m=1\)
Vậy \(A_{min}=3\Leftrightarrow m=1\)
\(A=2+\frac{1}{m^2-2m+1+1}=2+\frac{1}{\left(m-1\right)^2+1}\)
\(\left(m-1\right)^2+1\ge1\Leftrightarrow\frac{1}{\left(m-1\right)^2+1}\le1\)
\(\Rightarrow A\le3\)
\("="\Leftrightarrow m=1\)
Tìm GTNN và GTLN của 2m/(m2+1)
đặt 2m/(m^2+1)=a. nhân chéo lên rùi đưa về dạng pt bậc hai xét denta lớn hơn bằng 0.=>min,mã. OK!
Bài 1: Cho y=x2-4x (P)
a,Khảo sát sự biến thiên và vẽ đồ thị hàm số (P)
b,Tìm GTLN,GTNN của hàm số trên [0;4]
c,Tìm m để phương trình:x2-4x+2m=0 có 2 nghiệm phân biệt
Bài 2:Tìm m để GTNN của y=-x2+4x+m2-2m trên [-1;3] bằng 1
Bài 1:
\(c,\text{PT có 2 }n_0\text{ phân biệt }\Leftrightarrow\Delta'=2^2-2m>0\Leftrightarrow2m< 4\Leftrightarrow m< 2\)
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.