Tìm GTNN của đa thức:A=x(x-6)
và GTLN của đa thức :B=-3x(x+3)-7
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Bài 5: Tìm GTNN của các biểu thức sau:
a) A = x^2 – 4x + 9
b) B = x^2 – x + 1
c) C = 2x^2 – 6x
Bài 4: Tìm GTLN của các đa thức:
a) M = 4x – x^2 + 3
b) N = x – x^2
c) P = 2x – 2x^2 – 5
Bài 5:
a) \(A=x^2-4x+9=\left(x^2-4x+4\right)+5=\left(x-2\right)^2+5\ge5\)
\(minA=5\Leftrightarrow x=2\)
b) \(B=x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(minB=\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}\)
c) \(C=2x^2-6x=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)
\(minC=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\)
Bài 4:
a) \(M=4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
\(maxM=7\Leftrightarrow x=2\)
b) \(N=x-x^2=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)
\(maxN=\dfrac{1}{4}\Leftrightarrow x=\dfrac{1}{2}\)
c) \(P=2x-2x^2-5=-2\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{9}{2}=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\le-\dfrac{9}{2}\)
\(maxP=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{1}{2}\)
cho hai đa thức:A(x)=x^4+3-3x và B(x)=5^3+3-3x^2+x^4-2x+3x^2+x
a.thu gọn và sắp xếp các đa thức theo lũy thừa giảm dần của biến
b.tính gias trị của đa thức A(x) tại x=2
c.tính A(x)+B(x) và A(x)-B(x)
A(x) + B(x) = x4 - 3x + 3 + x4 - x + 128
A(x) +B(x) = (x4 + x4) - (3x+x) +( 3 +128)
A(x) + B(x) = 2x4 - 4x + 131
A(x) -B(x) = x4 - 3x + 3 - (x4 - x + 128)
A(x) -B(x) = x4 - 3x + 3 - x4 + x - 128
A(x) - B(x) = (x4 - x4) - (3x - x) - ( 128 - 3)
A(x) - B(x) = 0 - 2x - 125
A(x) - B(x) = -2x - 125
A(x) = x4 + 3 - 3x
A(x) = x4 - 3x + 3
B(x) = 53 + 3 - 3x2 + x4 - 2x + 3x2 + x
B(x) = (125 + 3) - ( 3x2 - 3x2) + x4 -( 2x - x)
B(x) = 128 - 0 + x4 - x
B(x) = x4 - x + 128
b, A(2) = 24 - 3 \(\times\) 2 + 3
A(2) = 16 - 6 + 3
A(2) = 10 + 3
A(2) = 13
Tìm GTNN của đa thức:
a.(2*x+3)^2+1
b.x^2+4*x+6
c.x*2+2*x-5
Tìm GTLN của đa thức:
a.-x^2+6*x-5
b.-2*x^2+4*x+3
14. Cho hai đa thức:
A(x) = 6x3 - x (x + 2) + 4 (x + 3);
B(x) = -x (x + l)- (4 - 3x) + x2 (x - 2).
a) Thu gọn các đa thức trên.
b) Tìm nghiệm của đa thức C(x) = A(x) + B(x) - x2 (7x - 4).
a) A(x) = 6x3-x(x+2)+4(x+3)
= 6x3-x2+2x+12
B(x) = -x(x+1)-(4-3x)+x2(x-2)
= -(x2)-x-4+3x+x3-2x2
= x3-3x2+2x-4
b) C(x) = 6x3-x2+2x+12+x3-3x2+2x-4-7x3+4x2=0
⇒ 4x+8=0
⇒ 4x = -8
⇒ x = -2
Vậy nghiệm của đa thức C(x) là 2
Cho các đa thức :
A(x)= -1+5x6-6x2-5-9x6+4x4-3x2
B(x)= 2-5x2+3x4-4x2+3x+x4-4x6-7x
a) thu gọn và sắp xếp các đa thức theo lũy thừa giảm cuả biến
b) Tìm bậc và hệ số của mỗi đa thức
c) tìm nghiệm của đa thức C(x)=A(x)-B(x)
d) tìm x để đa thức M(x)= C(x)+ x2 có GTNN
tìm GTNN đó
a) dễ tự làm
b) A(x) có bậc 6
hệ số: -1 ; 5 ; 6 ; 9 ; 4 ; 3
B(x) có bậc 6
hệ số: 2 ; -5 ; 3 ; 4 ; 7
c) bó tay
d) cx bó tay
a) Hãy cho biết biểu thức nào sau đây là đơn thức một biến:-2m^2+m;-1/5x+3y;x b) Tìm bậc của đa thức:A(x)=-x^2+2/3x-1 c) Tính giá trị của đa thức:B(x)=x^2+4x-5Khi x =-3
a: x là đơn thức một biến
b: A(x)=-x^2+2/3x-1
Đặt A(x)=0
=>-x^2+2/3x-1=0
=>x^2-2/3x+1=0
=>x^2-2/3x+1/9+8/9=0
=>(x-1/3)^2+8/9=0(vô lý)
c: B(-3)=(-3)^2+4*(-3)-5
=9-5-12
=4-12=-8
Tìm GTLN của mỗi đa thức sau : a , B(x) = -x^2 + 3x -7 . b, C(x) = -x ^ 2 + 7x - 20 . Q(x)= -x^2 - x + 7
a: \(B\left(x\right)=-\left(x^2-3x+7\right)\)
\(=-\left(x^2-3x+\dfrac{9}{4}+\dfrac{19}{4}\right)\)
\(=-\left(x-\dfrac{3}{2}\right)^2-\dfrac{19}{4}\le-\dfrac{19}{4}\)
Dấu '=' xảy ra khi x=3/2
b: Ta có: \(C\left(x\right)=-x^2+7x-20\)
\(=-\left(x^2-7x+20\right)\)
\(=-\left(x^2-7x+\dfrac{49}{4}+\dfrac{31}{4}\right)\)
\(=-\left(x-\dfrac{7}{2}\right)^2-\dfrac{31}{4}\le-\dfrac{31}{4}\)
Dấu '=' xảy ra khi x=7/2
Tìm GTlN, GTNN của các đa thức sau :
a) M = x^2 - 2x + 5
b) N = 4x - x^2 + 3
2−2x+5
2+2x−5)
2+2x+1)+6
2+6
2≤0∀x
2+6≤6∀x
Dấu "=" xảy ra ⇔
Vậy
2+3
22−4x−3)
2−4x+4−7)
2−7]
2+7
22+7≤7
2=0⇔x=2
Vậy MAXA=7 khi x = 2
Tìm GTLN của đa thức:
D=-3x(x+3)-7
\(D=-3x\left(x+3\right)-7=-3x^2-9x-7=-3\left(x^2+2x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\right)-7\)
\(=-3\left[\left(x+\frac{3}{2}\right)^2-\frac{9}{4}\right]-7=-3\left(x+\frac{3}{2}\right)^2+\frac{27}{4}-7=-3\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\) < \(-\frac{1}{4}\)
Dấu "=" xảy ra <=> \(-3\left(x+\frac{3}{2}\right)^2=0< =>x=-\frac{3}{2}\)
Vậy maxD=-1/4 khi x=-3/2