H24

Tìm GTNN của đa thức:A=x(x-6)

và GTLN của đa thức :B=-3x(x+3)-7

 

LA
3 tháng 7 2018 lúc 16:15

a,Ta có :\(A=x\left(x-6\right)=x^2-6x\)

                \(=x^2-6x+9-9\)

                \(=\left(x-3\right)^2-9\)

Vì: \(\left(x-3\right)^2\ge0\forall x\)

\(\Rightarrow\)\(\left(x-3\right)^2-9\ge-9\forall x\)

Hay: \(A\ge-9\forall x\)

Dấu = xảy ra khi (x-3)^2=0 

                   <=>x=3

Vậy Min A= -9 tại x=3

b,Ta có: \(B=-3x\left(x+3\right)-7\)

                  \(=-3x^2-9x-7\)

                   \(=-3\left(x^2+3x+\frac{7}{3}\right)\)

                     \(=-3\left[\left(x^2+3x+\frac{9}{4}\right)+\frac{1}{12}\right]\)

                      \(=-3\left[\left(x+\frac{3}{2}\right)^2+\frac{1}{12}\right]\)

                        \(=-3\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\)

Vì: \(-3\left(x+\frac{3}{2}\right)^2\le0\forall x\)

\(\Rightarrow-3\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\le\frac{-1}{4}\forall x\)

Hay \(B\le\frac{-1}{4}\forall x\)

Dấu = xảy ra khi \(-3\left(x+\frac{3}{2}\right)^2=0\)

\(\Rightarrow x=\frac{-3}{2}\)

Vậy Max B=-1/4 tại x=-3/2

                 

Bình luận (0)
KT
3 tháng 7 2018 lúc 16:08

a)  \(A=x\left(x-6\right)=x^2-6x+9-9=\left(x-3\right)^2-9\ge-9\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=3\)

Vậy Min A = -9 khi x = 3

b)  \(B=-3x\left(x+3\right)-7=-3x^2-9x-7=-3\left(x^2+9x+20,25\right)+53,75\)

          \(=-3\left(x+4,5\right)^2+53,75\le53,75\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=-4,5\)

Vậy Max B = 53,75 khi x = -4,5

Bình luận (0)
KT
3 tháng 7 2018 lúc 16:17

câu b mk lm nhầm, bn tham khảo của MIYANO SHINO nhé

Bình luận (0)
H24
3 tháng 7 2018 lúc 16:19

mk cảm ơn các bn nhìu nha

Bình luận (0)

Các câu hỏi tương tự
DD
Xem chi tiết
ST
Xem chi tiết
H24
Xem chi tiết
KT
Xem chi tiết
H24
Xem chi tiết
SS
Xem chi tiết
LN
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết