Những câu hỏi liên quan
H24
Xem chi tiết
H24
26 tháng 8 2021 lúc 20:08

`a)x^2-2x+2+4y^2+4y`

`=x^2-2x+1+4y^2+4y+1`

`=(x-1)^2+(2y+1)^2`

`b)4x^2+y^2+12x+4y+13`

`=4x^2+12x+9+y^2+4y+4`

`=(2x+3)^2+(y+2)^2`

`c)x^2+17+4y^2+8x+4y`

`=x^2+8x+16+4y^2+4y+1`

`=(x+4)^2+(2y+1)^2`

`d)4x^2-12xy+y^2-4y+13`

`=4x^2-12x+9+y^2-4y+4`

`=(2x-3)^2+(y-2)^2`

Bình luận (0)
LL
26 tháng 8 2021 lúc 20:10

a) \(x^2-2x+2+4y^2+4y=\left(x-1\right)^2+\left(2y+1\right)^2\)

b) \(4x^2+y^2+12x+4y+13=\left(2x+3\right)^2+\left(y+2\right)^2\)

c) \(x^2+17+4y^2+8x+4y=\left(x+4\right)^2+\left(2y+1\right)^2\)

d) \(4x^2-12x+y^2-4y+13=\left(2x-3\right)^2+\left(y-2\right)^2\)

Bình luận (0)
NT
26 tháng 8 2021 lúc 22:47

a: \(x^2-2x+2+4y^2+4y\)

\(=x^2-2x+1+4y^2+4y+1\)

\(=\left(x-1\right)^2+\left(2y+1\right)^2\)

b: \(4x^2+12x+y^2+4y+13\)

\(=4x^2+12x+9+y^2+4y+4\)

\(=\left(2x+3\right)^2+\left(y+2\right)^2\)

c: \(x^2+8x+4y^2+4y+17\)

\(=x^2+8x+16+4y^2+4y+1\)

\(=\left(x+4\right)^2+\left(2y+1\right)^2\)

d: \(4x^2-12x+y^2-4y+13\)

\(=4x^2-12x+9+y^2-4y+4\)

\(=\left(2x-3\right)^2+\left(y-2\right)^2\)

Bình luận (0)
NL
Xem chi tiết
NL
11 tháng 11 2019 lúc 11:28

ai đúng mình tk cho

mình cần chiều nay rồi

Bình luận (0)
 Khách vãng lai đã xóa
DT
Xem chi tiết
AH
11 tháng 1 2021 lúc 19:08

Lời giải:

a)

$A=5-8x-x^2=21-(x^2+8x+16)=21-(x+4)^2$Vì $(x+4)^2\geq 0$ nên $A=21-(x+4)^2\leq 21$

Vậy GTLN của $A$ là $21$. Giá trị này đạt tại $x+4=0\Leftrightarrow x=-4$

b) 

$B=5-x^2+2x-4y^2-4y=5-(x^2-2x)-(4y^2+4y)$

$=7-(x^2-2x+1)-(4y^2+4y+1)$

$=7-(x-1)^2-(2y+1)^2$

Vì $(x-1)^2\geq 0; (2y+1)^2\geq 0$ với mọi $x,y$ nên $B=7-(x-1)^2-(2y+1)^2\leq 7$Vậy GTLN của $B$ là $7$ tại $x=1; y=\frac{-1}{2}$

Bình luận (0)
DH
Xem chi tiết
HT
Xem chi tiết
KN
6 tháng 2 2021 lúc 11:12

Ta có: \(4x^2+4z^2=17\Rightarrow x^2+z^2=\frac{17}{4}\)\(4y\left(x+2\right)=5\Leftrightarrow2xy+4y=\frac{5}{2}\)\(20y^2+27=-16z\Rightarrow5y^2+4z=-\frac{27}{4}\)

\(\Rightarrow x^2+z^2-2xy-4y+5y^2+4z=-5\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(z^2+4z+4\right)+\left(4y^2-4y+1\right)=0\)\(\Leftrightarrow\left(x-y\right)^2+\left(z+2\right)^2+\left(2y-1\right)^2=0\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=-2\end{cases}}\)

\(\Rightarrow M=10.\frac{1}{2}+4.\frac{1}{2}+2019.\left(-2\right)=-4031\)

Bình luận (0)
 Khách vãng lai đã xóa
NK
Xem chi tiết
H9
7 tháng 7 2023 lúc 11:19

3, \(C=x^2-8xy+16y^2\)

\(C=x^2-2\cdot4y\cdot x+\left(4y\right)^2\)

\(C=\left(x-4y\right)^2\)

Thay \(x-4y=5\) vào C ta được:

\(C=5^2=25\)

Vậy: ......

4, \(D=9x^2+1620-12xy+4y^2\)

\(D=\left(9x^2-12xy+4y^2\right)+1620\)

\(D=\left[\left(3x\right)^2-2\cdot3x\cdot2y+\left(2y\right)^2\right]+1620\)

\(D=\left(3x-2y\right)^2+1620\)

Thay \(3x-2y=20\) vào D ta được:

\(D=20^2+1620=400+1620=2020\)

Vậy: ...

Bình luận (0)
ML
7 tháng 7 2023 lúc 11:20

3/

\(C=x^2-8xy+16y^2=x^2-2.4.xy+\left(4y\right)^2=\left(x-4y\right)^2\)

Thay x - 4y =  5 ta có: \(C=5^2=25\)

4/

\(D=9x^2-12xy+4y^2+1620\\ =\left(3x\right)^2-3.2.2xy+\left(2y\right)^2+1620\\ =\left(3x-2y\right)^2+1620\)

Thay 3x - 2y = 20. Ta có: \(D=20^2+1620=400+1620=2020\)

Bình luận (0)
GV
Xem chi tiết
NT
8 tháng 11 2021 lúc 21:37

\(P=x^2+4xy+4y^2-4xy-4y^2+2x+3\)

\(=x^2+2x+3\)

Bình luận (0)
SD
Xem chi tiết
DT
Xem chi tiết
AH
11 tháng 1 2021 lúc 19:29

Lời giải:

a) 

$A=4x^2+4x+11=(4x^2+4x+1)+10=(2x+1)^2+10\geq 10$

Vậy $A_{\min}=10$. Giá trị này đạt tại $(2x+1)^2=0$

$\Leftrightarrow x=-\frac{1}{2}$

b) 

$C=x^2-2x+y^2-4y+7=(x^2-2x+1)+(y^2-4y+4)+2$

$=(x-1)^2+(y-2)^2+2\geq 2$

Vậy $C_{\min}=2$. Giá trị này đạt tại $(x-1)^2=(y-2)^2=0$

$\Leftrightarrow x=1; y=2$

Bình luận (0)