phân tích: \(x+2\sqrt{x}-15\)
Kết quả phân tích thành nhân tử x - 2\(\sqrt{x}\) - 15
Lời giải:
$x-2\sqrt{x}-15=(x-5\sqrt{x})+(3\sqrt{x}-15)$
$=\sqrt{x}(\sqrt{x}-5)+3(\sqrt{x}-5)=(\sqrt{x}-5)(\sqrt{x}+3)$
\(\text{ x - 2 √ x - 15}\)
\(=x+3\sqrt{x}\)\(-5\sqrt{x}\)\(-15\)
\(=\left(x+3\sqrt{x}\right)\)\(-\left(5\sqrt{x}\right)\)\(+15\)
\(=\sqrt{x}\)\(\left(\sqrt{x}+3\right)-5\left(\sqrt{x}+3\right)\)
\(\left(\sqrt{x}+3\right)-5\left(\sqrt{x}-5\right)\)
1. Phân tích ra thừa số
a.\(\sqrt{ab}-\sqrt{ac}+\sqrt{bc}+b\)
b.x-y-3(\(\sqrt{x}-\sqrt{y}\))
c. \(\sqrt{x^2-y^2}\)-x+y
2. GPT
a.\(\sqrt{\sqrt{5}-\sqrt{3}x}\)=\(\sqrt{8+2\sqrt{15}}\)
b.\(\sqrt{2+\sqrt{3+\sqrt{x}}}=3\)
Bài 2:
a: Ta có: \(\sqrt{\sqrt{5}-x\sqrt{3}}=\sqrt{8+2\sqrt{15}}\)
\(\Leftrightarrow\sqrt{5}-x\sqrt{3}=8+2\sqrt{15}\)
\(\Leftrightarrow x\sqrt{3}=\sqrt{5}-8-2\sqrt{15}\)
\(\Leftrightarrow x=\dfrac{\sqrt{15}-8\sqrt{3}-6\sqrt{5}}{3}\)
b: Ta có: \(\sqrt{2+\sqrt{\sqrt{x}+3}}=3\)
\(\Leftrightarrow\sqrt{\sqrt{x}+3}=7\)
\(\Leftrightarrow\sqrt{x}=46\)
hay x=2116
Phân tích thành nhân tử
\(x+\sqrt{x}\)
\(x-\sqrt{x}\)
\(a+3\sqrt{a}-10\)
\(x\sqrt{x}+\sqrt{x}-x-1\)
\(x+\sqrt{x}-2\)
\(x-5\sqrt{x}+6\)
\(x\sqrt{x}-1\)
\(x\sqrt{x}-x+\sqrt{x}-1\)
\(x+2\sqrt{x}-15\)
\(x-2\sqrt{x}-3\)
\(a+\sqrt{a}-6\)
\(x-16\)
\(x+2\sqrt{x}+1\)
\(x-1\)
\(x-2\sqrt{x}+1\)
\(a\sqrt{a}+1\)
\(a+\sqrt{a}-2\)
\(2x-5\sqrt{x}+3\)
\(x-9\)
\(x+\sqrt{x}-6\)
1. $x+\sqrt{x}=\sqrt{x}(\sqrt{x}+1)$
2. $x-\sqrt{x}=\sqrt{x}(\sqrt{x}-1)$
3. $a+3\sqrt{a}-10=(a-2\sqrt{a})+(5\sqrt{a}-10)$
$=\sqrt{a}(\sqrt{a}-2)+5(\sqrt{a}-2)=(\sqrt{a}+5)(\sqrt{a}-2)$
4. $x\sqrt{x}+\sqrt{x}-x-1=(x\sqrt{x}+\sqrt{x})-(x+1)=\sqrt{x}(x+1)-(x+1)$
$=(x+1)(\sqrt{x}-1)$
5. $x+\sqrt{x}-2=(x-\sqrt{x})+(2\sqrt{x}-2)$
$=\sqrt{x}(\sqrt{x}-1)+2(\sqrt{x}-1)=(\sqrt{x}-1)(\sqrt{x}+2)$
6. $x-5\sqrt{x}+6=(x-2\sqrt{x})-(3\sqrt{x}-6)=\sqrt{x}(\sqrt{x}-2)-3(\sqrt{x}-2)=(\sqrt{x}-2)(\sqrt{x}-3)$
7. $x\sqrt{x}-1=(\sqrt{x})^3-1^3=(\sqrt{x}-1)(x+\sqrt{x}+1)$
8. $x\sqrt{x}-x+\sqrt{x}-1=x(\sqrt{x}-1)+(\sqrt{x}-1)=(\sqrt{x}-1)(x+1)$
9. $x+2\sqrt{x}-15=(x-3\sqrt{x})+(5\sqrt{x}-15)=\sqrt{x}(\sqrt{x}-3)+5(\sqrt{x}-3)=(\sqrt{x}-3)(\sqrt{x}+5)$
10. $x-2\sqrt{x}-3=(x+\sqrt{x})-(3\sqrt{x}+3)=\sqrt{x}(\sqrt{x}+1)-3(\sqrt{x}+1)=(\sqrt{x}+1)(\sqrt{x}-3)$
\(x+\sqrt{x}=\sqrt{x}\left(\sqrt{x}+1\right)\\ x-\sqrt{x}=\sqrt{x}\left(\sqrt{x}-1\right)\\ a+3\sqrt{a}-10=a+5\sqrt{a}-2\sqrt{a}-10=\sqrt{a}\left(\sqrt{a}+5\right)-2\left(\sqrt{a}+5\right)=\left(\sqrt{a}-2\right)\left(\sqrt{a}+5\right)\)
\(x\sqrt{x}+\sqrt{x}-x-1=\left(x\sqrt{x}-x\right)+\left(\sqrt{x}-1\right)=x\left(\sqrt{x}-1\right)+\sqrt{x}-1=\left(\sqrt{x}-1\right)\left(x+1\right)\\ x+\sqrt{x}-2=x+2\sqrt{x}-\sqrt{x}-2=\sqrt{x}\left(\sqrt{x}+2\right)-\left(\sqrt{x}+2\right)=\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)\\ x-5\sqrt{x}+6=x-2\sqrt{x}-3\sqrt{x}-6=\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)=\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)\)
Mấy bạn còn lại tương tự những bài trên nhé. Nếu còn thắc mắc ở chỗ nào bạn có thể liên hệ mình nhé. Nhớ lần sau bạn tách ra nha, chứ nhiều câu quá.
Phân tích thành nhân tử
\(a\sqrt{a}-b\sqrt{b}\)
\(x+y-2\sqrt{xy}\)
\(x-2\sqrt{x-1}\)
\(15x^2-8x\sqrt{15}+16\)
\(\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)\)
\(\left(\sqrt{x}-\sqrt{y}\right)^2\)
\(x-1-2\sqrt{x-1}+1=\left(\sqrt{x-1}-1\right)^2\)
\(\left(\sqrt{15}x-4\right)^2\)
\(a\sqrt{a}-b\sqrt{b}\)
\(=\sqrt{a^3}-\sqrt{b^3}\)
\(=\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)\)
\(x+y-2\sqrt{xy}\)
\(=\left(\sqrt{x}-\sqrt{y}\right)^2\)
Phân tích thành thừa số các biểu thức sau:
a) \(1+\sqrt{3}+\sqrt{5}+\sqrt{15}\) b) \(\sqrt{10}+\sqrt{14}+\sqrt{15}+\sqrt{21}\) c) \(\sqrt{35}-\sqrt{15}+\sqrt{14}-\sqrt{6}\)
d) \(3+\sqrt{18}+\sqrt{3+\sqrt{8}}\) e) \(xy+y\sqrt{x}+\sqrt{x}+1\) g) \(3+\sqrt{x}+9-x\)
a) \(1+\sqrt{3}+\sqrt{5}+\sqrt{15}\)
\(=\left(1+\sqrt{3}\right)+\sqrt{5}\left(1+\sqrt{3}\right)\)
\(=\left(1+\sqrt{3}\right)\left(1+\sqrt{5}\right)\)
b) \(\sqrt{10}+\sqrt{14}+\sqrt{15}+\sqrt{21}\)
\(=\sqrt{5}\left(\sqrt{2}+\sqrt{3}\right)+\sqrt{7}\left(\sqrt{2}+\sqrt{3}\right)\)
\(=\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{5}+\sqrt{7}\right)\)
c) \(\sqrt{35}-\sqrt{15}+\sqrt{14}-\sqrt{6}\)
\(=\sqrt{5}\left(\sqrt{7}-\sqrt{3}\right)+\sqrt{2}\left(\sqrt{7}-\sqrt{3}\right)\)
\(=\left(\sqrt{7}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{2}\right)\)
e) \(xy+y\sqrt{x}+\sqrt{x}+1\)
\(=y\sqrt{x}\left(\sqrt{x}+1\right)+\left(\sqrt{x}+1\right)\)
\(=\left(\sqrt{x}+1\right)\left(y\sqrt{x}+1\right)\)
g) \(3+\sqrt{x}+9-x\)
\(=\left(3+\sqrt{x}\right)+\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)\)
\(=\left(3+\sqrt{x}\right)\left(4-\sqrt{x}\right)\)
phân tích thành nhân tử
a) x-4\(\sqrt{x-2}\) +2 (x>_2)
b) x+4\(\sqrt{x-2}\) +2 (x>_2)
a) \(x-4\sqrt{x-2}+2\left(x\ge2\right)\)
\(=x-4\sqrt{x-2}-2+4\)
\(=\left(x-2\right)-4\sqrt{x-2}+4\)
\(=\left(\sqrt{x-2}\right)^2-2\cdot2\cdot\sqrt{x-2}+2^2\)
\(=\left(\sqrt{x-2}-2\right)^2\)
b) \(x+4\sqrt{x-2}+2\left(x\ge2\right)\)
\(=x+4\sqrt{x-2}+4-2\)
\(=\left(x-2\right)+4\sqrt{x-2}+4\)
\(=\left(\sqrt{x-2}\right)^2+2\cdot2\cdot\sqrt{x-2}+2^2\)
\(=\left(\sqrt{x-2}+2\right)^2\)
Phân tích thành nhân tử: x * sqrt(x) + 2x + sqrt(x) +2(với x>0)
\(x\sqrt{x}+2x+\sqrt{x}+2\left(x>0\right)\)
\(=\left(x\sqrt{x}+\sqrt{x}\right)+\left(2x+2\right)\)
\(=\sqrt{x}\left(x+1\right)+2\left(x+1\right)\)
\(=\left(\sqrt{x}+2\right)\left(x+1\right)\)
phân tích đa thứ thành nhân từ
a)\(x\sqrt{x}+\sqrt{x}-x-1\)
b)\(\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+6\)
a) \(x\sqrt{x}+\sqrt{x}-x-1\)
\(=\left(x\sqrt{x}-x\right)+\left(\sqrt{x}-1\right)\)
\(=x\left(\sqrt{x}-1\right)+\left(\sqrt{x}-1\right)\)
\(=\left(\sqrt{x}-1\right)\left(x+1\right)\)
b) \(\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+6\)
\(=\sqrt{a}\left(\sqrt{b}+2\right)+3\left(\sqrt{b}+2\right)\)
\(=\left(\sqrt{b}+2\right)\left(\sqrt{a}+3\right)\)
1) Phân tích thành nhân tử : \(x+5\sqrt{x}+6\)
2) Thực hiện phép tính \(\left(\sqrt{12}+3\sqrt{15}-4\sqrt{135}\right).\sqrt{3}\)
Giúp mk vs các bạn, mk cần gấp
1) \(x+5\sqrt{x}+6=x+2\sqrt{x}+3\sqrt{x}+6\)
\(=\sqrt{x}\left(\sqrt{x}+2\right)+3\left(\sqrt{x}+2\right)\)
\(=\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)\)
2) \(=\left(4\sqrt{3}+3\sqrt{15}-12\sqrt{15}\right)\sqrt{3}\)
\(=\left(4\sqrt{3}-8\sqrt{15}\right)\sqrt{3}=12-24\sqrt{5}\)