Những câu hỏi liên quan
LA
Xem chi tiết
LN
28 tháng 7 2021 lúc 11:34

a) BD=BC/2=12/2=6

Vậy BC=6cm

Áp dụng định lý Py ta go vào tam giác vuông ABD, ta có:

\(AB^2+BD^2=AD^2\)

\(10^2+6^2=136\)

=> AD=\(\sqrt{136}\)

Bình luận (0)
LN
28 tháng 7 2021 lúc 11:48

b) Tam giác ABC cân tại A, đường cao AD 

=> AD là đường phân giác góc BAC  (1)

Sau đó cm góc BG là tia pg góc HBD và CG là tia pg góc DCL cắt nhu tại G.

=> AG là pg góc BAC                          (2)

Từ (1) và (2) => AG và AD trùng nhau.

=>A, G, D thẳng hàng

 

 

Bình luận (1)
LN
28 tháng 7 2021 lúc 11:50

Vẽ HÌNH:

A B C D H L G

Bình luận (1)
HL
Xem chi tiết
TL
Xem chi tiết
H24
23 tháng 7 2021 lúc 10:03

a) trong tam giác cân đường cao đồng thời là đường phân giác nên AH cũng là đường phân giác nên góc BAH = góc CAH

Xét ΔADH và ΔAEH có:
góc ADH=góc AEH (= 90o)

chung AH

góc HAD = góc HAE (cmt)

⇒ΔADH = ΔAEH(ch-gn)

⇒ DH = EH (2 cạnh tương ứng)

b) trong tam giác cân đường cao đồng thời là đường trung tuyến nên AH cũng là đường trung tuyến nên HB = HC

Xét ΔBDH và ΔCEH có:

góc BDH = góc CEH (=90o)

HB=HC(cmt)

góc B = góc C (ΔABC cân tại A)

⇒ ΔBDH = ΔCEH(ch-gn)

Bình luận (0)
KS
23 tháng 7 2021 lúc 10:23

Hình vẽ: Bạn tự vẽ hình nhé !

a, Ta có:

△ABC cân tại A nên ∠ABC= ∠ACB hay ∠ABH= ∠ACH 

                                 và AB= AC

Xét △AHB và △AHC, có:
  AB= AC           ( theo chứng minh trên )

  ∠ABH= ∠ACH ( theo chứng minh trên )

  AH: cạnh chung

Nên: △AHB= △AHC ( c.g.c)

⇒ ∠BAH= ∠CAH ( 2 góc tương ứng ) hay ∠DAH= ∠EAD

Xét △ADH và △AEH, có:

 ∠HDA= ∠HEA=90o ( Do HD ⊥ AB, HE ⊥ AC )

  AH: cạnh chung

  ∠DAH= ∠EAH ( theo chứng minh trên )

Nên: △ADH= △AEH ( cạnh huyền- góc nhọn )

 ⇒ AD= AE ( 2 cạnh tương ứng ) ( đcpcm )

b,

Ta có: Do △ADH= △AEH nên :HD= HE ( 2 cạnh tương ứng )

          AB= AC 

    ⇒ AD+ DB= AE+EC

  mà AD= AE nên DB= EC

Xét △BDH và △CEH, có:

  ∠BDH= ∠CEH=90o 

  HD= HE           ( theo chứng minh trên )

  DB= EC           ( theo chứng minh trên ) 

Nên △BDH= △CEH ( c.g.c ) ( đcpcm)

Bình luận (2)
NT
23 tháng 7 2021 lúc 14:01

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có 

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)

Suy ra: \(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)

hay \(\widehat{DAH}=\widehat{EAH}\)

Xét ΔDAH vuông tại D và ΔEAH vuông tại E có

AH chung

\(\widehat{DAH}=\widehat{EAH}\)(cmt)

Do đó: ΔDAH=ΔEAH(Cạnh huyền-góc nhọn)

Suy ra: AD=AE(Hai cạnh tương ứng)

b) Xét ΔDBH vuông tại D và ΔECH vuông tại E có 

HB=HC(ΔABH=ΔACH)

HD=HE(ΔDAH=ΔEAH)

Do đó: ΔDBH=ΔECH(cạnh huyền-cạnh góc vuông)

Bình luận (0)
RK
Xem chi tiết
NT
13 tháng 5 2022 lúc 13:15

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

góc BAD chung

Do đó: ΔABD=ΔACE
Suy ra: AD=AE

b: \(BD=\sqrt{10^2-6^2}=8\left(cm\right)\)

d: Xét ΔHBC có \(\widehat{HBC}=\widehat{HCB}\)

nên ΔHBC cân tại H

=>HB=HC

hay H nằm trên đường trung trực của BC(1)

Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường trung trực của BC(2)

Từ (1) và (2) suy ra A,H,M thẳng hàng

Bình luận (0)
PB
Xem chi tiết
CT
18 tháng 5 2018 lúc 4:06

Bình luận (0)
BS
30 tháng 4 2021 lúc 19:47

a, Xét tam giác ABH và tam giác ACH vuông tại H có:   +, AB = AC ( vì tam giác ABC cân tại A)

                                                                                     +, AH chung

=> tam giác ABH = tam giác ACH (ch-cgv) => BH = CH = 6/2 = 3cm

b, Vì BH = CH => AH là đường trung tuyến của tam giác ABC => G nằm trên AH => A, G, H thẳng hàng

c, Vì  tam giác ABH = tam giác ACH => góc BAH = góc CAH

Xét tam giác ABG và tam giác ACG có 

AB = AC ( vì tam giác ABC cân tại A )

góc BAH = góc CAH ( chứng minh trên)

AG chung

=>tam giác ABG = tam giác ACG(c.g.c)

=> góc ABG = góc ACG

Bình luận (0)
DH
Xem chi tiết
NT
9 tháng 8 2022 lúc 11:43

b: Ta có: ΔABC cân tại A

mà AD là đường cao

nên Dlà trung điểm của BC

Xét ΔCDH vuông tại D và ΔADB vuông tại D có 

góc HCD=góc BAD

Do đó; ΔCDH đồng dạng với ΔADB

Suy ra: CD/AD=DH/DB

hay \(AD\cdot DH=CD^2\)

Bình luận (0)
EQ
Xem chi tiết
KL
23 tháng 11 2023 lúc 7:27

loading... a) Ta có:

OB = OC (bán kính)

⇒ O nằm trên đường trung trực của BC (1)

Do ∆ABC cân tại A (gt)

AH là đường cao (gt)

⇒ AH cũng là đường trung trực của ∆ABC

⇒ AH là đường trung trực của BC (2)

Từ (1) và (2) suy ra O ∈ AH

⇒ O ∈ AD

Vậy AD là đường kính của (O)

b) Sửa đề: Tính độ dài các đường cao AH, BK của ∆ABC

Do AH là đường trung trực của BC (cmt)

⇒ H là trung điểm của BC

⇒ CH = BC : 2

= 12 : 2

= 6 (cm)

∆AHC vuông tại H

⇒ AC² = AH² + CH² (Pytago)

⇒ AH² = AC² - CH²

= 10² - 6²

= 64

⇒ AH = 8 (cm)

⇒ sinACH = AH/AC

= 4/5

⇒ ACH ≈ 53⁰

⇒ BCK ≈ 53⁰

∆BCK vuông tại K

⇒ sinBCK = BK/BC

⇒ BK = BC.sinBCK

= 10.sin53⁰

≈ 8 (cm)

Bình luận (0)
2N
Xem chi tiết
DL
Xem chi tiết
HT
29 tháng 5 2022 lúc 21:00

Tham khảo
a) Ta có: AB = AC (gt); AI = IB = 1/2AB (Cmt); AK = KC = 1/2 AC (gt)
AB = AI + IB 
AC = AK + KC
=> AI = AK
Ta lại có: t/giác ABC cân tại A; AH là đường cao
=> AH là đường p/giác (t/c của t/giác cân)
=> góc BAH = góc CAH
hay góc IAG = góc KAG

b) Xét t/giác IAG và t/giác KAG
có IA = AK (cmt)
 góc IAG = góc KAG (cmt)
  AG : chung
=> t/giác IAG = t/giác KAG (c.g.c)

c) Ta có: AI = AK (cm câu b)
=> t/giác AIK cân tại A
=> góc AIK = góc AKI = (180 độ - góc A)/2 (1)
Ta lại có:  t/giác ABC cân tại A
=> góc B = góc C = (180 độ - góc A)/2 (2)
Từ (1) và (2) suy ra góc AIK = góc B
Mà góc AIK và góc B ở vị trí đồng vị
=> IK // BC

Bình luận (0)
M3
29 tháng 5 2022 lúc 21:02

refer
a) Ta có: AB = AC (gt); AI = IB = 1/2AB (Cmt); AK = KC = 1/2 AC (gt)
AB = AI + IB 
AC = AK + KC
=> AI = AK
Ta lại có: t/giác ABC cân tại A; AH là đường cao
=> AH là đường p/giác (t/c của t/giác cân)
=> góc BAH = góc CAH
hay góc IAG = góc KAG

b) Xét t/giác IAG và t/giác KAG
có IA = AK (cmt)
 góc IAG = góc KAG (cmt)
  AG : chung
=> t/giác IAG = t/giác KAG (c.g.c)

c) Ta có: AI = AK (cm câu b)
=> t/giác AIK cân tại A
=> góc AIK = góc AKI = (180 độ - góc A)/2 (1)
Ta lại có:  t/giác ABC cân tại A
=> góc B = góc C = (180 độ - góc A)/2 (2)
Từ (1) và (2) suy ra góc AIK = góc B
Mà góc AIK và góc B ở vị trí đồng vị
=> IK // BC

Bình luận (0)