\(2\cdot f\left(x\right)+5\cdot f\left(\frac{1}{x}\right)=x^2\)
Tính \(f\left(\frac{1}{2}\right)\)
cho 2 đa thức
\(f\left(x\right)=3x^2-x+1\)
\(g\left(x\right)=x-1\)
a) tính giá trị của f(x)* g(x)
b)tìm x để \(f\left(x\right)\cdot g\left(x\right)+x^2\cdot\left[\left(1-3\cdot g\left(x\right)\right)\right]=\frac{5}{2}\)
cho đa thức \(f\left(x\right)=4\cdot x^2+3x+1\); \(g\left(x\right)=3x^2-2x+1\); \(k\left(x\right)=7\cdot x^2-35x+42\)
a) tính f(x)-g(x)=h(x)
b) tính nghiệm của h(x) và k(x)
c) tìm gia trị của đa thức h(x) biết:
\(\left(x^2-9\right)^{2021}=\left(\frac{3}{4}-81\right)\cdot\left(\frac{3^2}{5}-81\right)^2\cdot\left(\frac{3^2}{6}-81\right)^3\cdot\cdot\cdot\left(\frac{3^{2020}}{2023}-81\right)^{2020}\)
a, Ta có : \(f\left(x\right)-g\left(x\right)=h\left(x\right)\)hay
\(4x^2+3x+1-3x^2+2x-1=h\left(x\right)\)
\(\Rightarrow h\left(x\right)=x^2+5x\)
b, Đặt \(h\left(x\right)=x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Vậy nghiệm của đa thức h(x) là x = -5 ; x = 0
Đặt \(k\left(x\right)=7x^2-35x+42=0\)
\(\Leftrightarrow7\left(x^2+5x+6\right)=0\)
\(\Leftrightarrow7\left(x^2+2x+3x+6\right)=0\Leftrightarrow7\left(x+2\right)\left(x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-3\end{cases}}\)
Vậy nghiệm của đa thức k(x) là x = -3 ; x = -2
xin lỗi mọi người 1 tý nha cái phần c) ý ạ đề thì vậy như thế nhưng có cái ở phần biểu thức ở dưới ý là
\(\left(\frac{3^2}{6}-81\right)^3\) chuyển thành \(\left(\frac{3^3}{6}81\right)^3\)
bị sai mỗi thế thôi ạ mọi người giúp em với ạ
là \(\left(\frac{3^3}{6}-81\right)^3\)ạ
\(2\cdot f\left(x\right)+5\cdot\left(\frac{1}{x}\right)=x^2\)
Mọi người giúp mình nha????
Bài 1:thu gọn đa thức
a,\(-\frac{1}{3}xy\cdot\left(3x^2yz^2\right)\)
b,\(-54y^2\cdot bx\) với b là hằng số
c,\(-2x^2y\cdot\left(\frac{1}{2}\right)^2\cdot x\cdot\left(y^2x\right)^3\)
Bài 2:cho 2 đa thức:
\(f\left(x\right)=x^5-3x^2+7x^4-9x^3-\frac{1}{4}\)
\(g\left(x\right)=5x^4-x^5+x^2+3x^2-\frac{1}{4}\)
a,Hãy thu gọn và sắp xếp hai đa thức trên
b,Tính \(f\left(x\right)+g\left(x\right)\) và \(f\left(x\right)-g\left(x\right)\)
Bài 3:Cho \(f\left(x\right)=-15x^2+5x^4-4x^2+8x^2-9x^3-x^4+15-7x^3\)
a,Thu gọn f(x)
b,Tính f(1) và f(-1)
bài 1
a) \(-\frac{1}{3}xy\).(3\(x^2yz^2\))
=\(\left(-\frac{1}{3}.3\right)\).\(\left(x.x^2\right)\).(y.y).\(z^2\)
=\(-x^3\).\(y^2z^2\)
b)-54\(y^2\).b.x
=(-54.b).\(y^2x\)
=-54b\(y^2x\)
c) -2.\(x^2y.\left(\frac{1}{2}\right)^2.x.\left(y^2.x\right)^3\)
=\(-2x^2y.\frac{1}{4}.x.y^6.x^3\)
=\(\left(-2.\frac{1}{4}\right).\left(x^2.x.x^3\right).\left(y.y^2\right)\)
=\(\frac{-1}{2}x^6y^3\)
Bài 3:
a) \(f\left(x\right)=-15x^2+5x^4-4x^2+8x^2-9x^3-x^4+15-7x^3\)
\(f\left(x\right)=\left(5x^4-x^4\right)-\left(9x^3+7x^3\right)-\left(15x^2+4x^2-8x^2\right)+15\)
\(f\left(x\right)=4x^4-16x^3-11x^2+15\)
b)
\(f\left(x\right)=4x^4-16x^3-11x^2+15\)
\(f\left(1\right)=4\cdot1^4-16\cdot1^3-11\cdot1^2+15\)
\(f\left(1\right)=4\cdot1^4-16\cdot1^3-11\cdot1^2+15\)
\(f\left(1\right)=-8\)
\(f\left(x\right)=4x^4-16x^3-11x^2+15\)
\(f\left(-1\right)=4\cdot\left(-1\right)^4-16\cdot\left(-1\right)^3-11\cdot\left(-1\right)^2+15\)
\(f\left(-1\right)=24\)
Bài 1:
a) \(-\frac{1}{3}xy\cdot\left(3x^2yz^2\right)\)
\(=\left(-\frac{1}{3}\cdot3\right)\left(xx^2\right)\left(yy\right)z\)
\(=-x^3y^2z\)
b) \(-54y^2\cdot bx\)
\(=\left(-54b\right)xy^2\)
c) \(-2x^2y\cdot\left(\frac{1}{2}\right)^2\cdot x\cdot\left(y^2x\right)^3\)
\(=-2x^2y\cdot\frac{1}{4}\cdot x\cdot y^5x^3\)
\(=\left(-2\cdot\frac{1}{4}\right)\left(x^2xx^3\right)\left(yy^5\right)\)
\(=-\frac{1}{2}x^6y^6\)
lập bảng xét dấu của
a) f(x)=\(\frac{2x+6}{5x-10}\)
b) f(x)=(2x-4)*(-x+1)
c) f(x)=\(\frac{\left(x+3\right)\cdot\left(x-6\right)}{x\cdot\left(x+2\right)\cdot\left(-x-3\right)}\)
Xác định hàm số f(x) biết:
\(f\left(\frac{x-1}{x}\right)+2\cdot f\left(\frac{1}{x}\right)=x\left(x\ne0,1\right)\)
Hướng dẫn:
Đặt: \(\frac{1}{x}=t\)( t khác 0; 1)
=> \(f\left(1-t\right)+2f\left(t\right)=\frac{1}{t}\)=> \(2f\left(1-t\right)+4f\left(t\right)=\frac{2}{t}\)(1)
Đặt: \(\frac{1}{x}=1-t\)
=> \(f\left(t\right)+2f\left(1-t\right)=\frac{1}{1-t}\)(2)
Lấy (1) - (2) => \(f\left(t\right)=\frac{1}{3}\left(\frac{2}{t}-\frac{1}{1-t}\right)\)
Vậy \(f\left(x\right)=\frac{1}{3}\left(\frac{2}{x}-\frac{1}{1-x}\right)\)
P/s: Chú ý điều kiện
\(f\left(n\right)=\left(n^2+n+1\right)^2+1\). Xét dãy \(\left(u_n\right)\) sao cho : \(\left(u_n\right)=\dfrac{f\left(1\right)\cdot f\left(3\right)\cdot f\left(5\right)...\cdot f\left(2n-1\right)}{f\left(2\right)\cdot f\left(4\right)\cdot...\cdot f\left(2n\right)}\). Tính \(\lim\limits_{n\sqrt{u_n}}\)
Cho đa thức: f( x ) = \(2\cdot\left(x^2\right)^n-5\cdot\left(x^n\right)^2+8\cdot x^{n-1}\cdot x^{1+n}-4\cdot x^{n^2+1}\cdot x^{2\cdot n-n^2-1}\left(n\inℕ\right)\)
a, Thu gọn đa thức f(x)
b, Tìm giá trị nhỏ nhất của f(x) + 2020
a) \(f\left(x\right)=2.\left(x^2\right)^n-5.\left(x^n\right)^2+8n^{n-1}.x^{1+n}-4.x^{n^2+1}.x^{2n-n^2-1}\)
\(=2x^{2n}-5x^{2n}+8x^{2x}-4x^{2n}\)
\(=x^{2n}\)
b) \(f\left(x\right)+2020=x^{2n}+2020\)
Vì \(n\in N\Rightarrow2n\in N\)và 2n là số chẵn
\(\Rightarrow x^{2n}\ge1\)
\(\Rightarrow x^{2n}+2020\ge2021\)
Dấu"="xảy ra \(\Leftrightarrow x^{2n}=1\)
\(\Leftrightarrow n=0\)
Vậy ...
( ko bít đúng ko -.- )
Giải phương trình
a. \(\frac{1}{27}\cdot\left(x-3\right)^3-\frac{1}{125}\cdot\left(x-5\right)^3=0\)
b.\(125x^3-\left(2x+1\right)^3-\left(3x-1\right)^3=0\)
c.\(\left(x-3\right)^3+\left(x+1\right)^3=8\cdot\left(x-1\right)^3\)
d.\(\left(x^2-3x+2\right)\cdot\left(x^2+15x+56\right)+8=0\)
e.\(\left(2x^2-3x+1\right)\cdot\left(2x^2+5x+1\right)-9x^2=0\)
f.\(\left(x+6\right)^4+\left(x+8\right)^4=272\)