GPT: |1-5x| = a-x với a là số thực
GPT
a./2x-3/+/1-3x/=/x+2/
b./5x-/5x-10//=-10m^2x với m khác 0
1, Cho đa thức \(P\left(x\right)=ax^3+bx^2+cx+d\) với a,b,c,d là các hệ số nguyên. CMR nếu P(x) chia hết cho 5 với mọi giá trị nguyên của x thì các hệ số a,b,c,d đều chia hết cho 5
2, GPT nghiệm nguyên: \(5x^2+8y^2=20412\)
\(2,\\ PT\Leftrightarrow6x^2+9y^2-\left(x^2+y^2\right)=20412\\ \text{Mà }20412⋮3;6x^2+9y^2⋮3\\ \Leftrightarrow x^2+y^2⋮3\Leftrightarrow x^2⋮3;y^2⋮3\Leftrightarrow x⋮3;y⋮3\)
Đặt \(\left\{{}\begin{matrix}x=3a\\y=3b\end{matrix}\right.\left(a,b\in Z\right)\Leftrightarrow5\left(3a\right)^2+8\left(3b\right)^2=20412\)
\(\Leftrightarrow9\left(5a^2+8b^2\right)=20412\\ \Leftrightarrow5a^2+8b^2=2268\)
Mà \(2268⋮3\Leftrightarrow5a^2+8b^2⋮3\Leftrightarrow a^2⋮3;b^2⋮3\Leftrightarrow a⋮3;b⋮3\)
Đặt \(\left\{{}\begin{matrix}a=3c\\b=3d\end{matrix}\right.\left(c,d\in Z\right)\Leftrightarrow9\left(5c^2+8d^2\right)=2268\Leftrightarrow5c^2+8d^2=252\)
Mà \(252⋮3\Leftrightarrow5c^2+8d^2⋮3\Leftrightarrow c^2⋮3;d^2⋮3\Leftrightarrow c⋮3;d⋮3\)
Đặt \(\left\{{}\begin{matrix}c=3k\\d=3q\end{matrix}\right.\left(k,q\in Z\right)\Leftrightarrow9\left(5k^2+8q^2\right)=252\Leftrightarrow5k^2+8q^2=28\)
\(\Leftrightarrow5k^2=28-8q^2\ge0\Leftrightarrow q^2\le\dfrac{28}{8}=3,5\\ \text{Mà }q\in Z\\ \Leftrightarrow-3\le q^2\le3\Leftrightarrow-1\le q\le1\)
\(\forall q=0\Leftrightarrow k^2=\dfrac{28}{5}\left(ktm\right)\\ \forall q=\pm1\Leftrightarrow k=\pm2\\ \Leftrightarrow\left(c;d\right)=\left(6;3\right);\left(-6;-3\right);\left(-6;3\right);\left(6;-3\right)\\ \Leftrightarrow\left(a;b\right)=\left(18;9\right)\left(-18;-9\right);\left(-18;9\right);\left(18;-9\right)\\ \Leftrightarrow\left(x;y\right)=\left(54;27\right);\left(-54;-27\right);\left(54;-27\right);\left(-54;27\right)\)
GPT sau:
a) ( x-1)(5x+3)= (3x - 8 )(x-1)
b) 3x ( 25x + 15 )- 35 ( 5x+3) = 0
c) (2-3x ) ( x-11)=(3x-2)(2- 5x)
Giups mk vs thank cacs bn
b) PT \(\Leftrightarrow15x\left(5x+3\right)-35\left(5x+3\right)=0\)
\(\Leftrightarrow\left(15x-35\right)\left(5x+3\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=-\dfrac{3}{5}\end{matrix}\right.\)
Vậy \(S=\left\{-\dfrac{3}{5};\dfrac{7}{3}\right\}\)
c) PT \(\Leftrightarrow\left(2-3x\right)\left(x-11\right)+\left(2-3x\right)\left(2-5x\right)=0\)
\(\Leftrightarrow\left(2-3x\right)\left(-9-4x\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{9}{4}\end{matrix}\right.\)
Vậy \(S=\left\{\dfrac{2}{3};-\dfrac{9}{4}\right\}\)
a)(x-1)(5x+3)=(3x-8)(x-1)
\(\Leftrightarrow\)(x-1)(5x+3)-(3x-8)(x-1)=0
\(\Leftrightarrow\left(x-1\right)\left(5x-3-3x+8\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x-5\right)=0\)
\(\left[{}\begin{matrix}x-1=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{5}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{1;\dfrac{5}{2}\right\}\)
a) Ta có: \(\left(x-1\right)\left(5x+3\right)=\left(3x-8\right)\left(x-1\right)\)
\(\Leftrightarrow5x^2+3x-5x-3=3x^2-3x-8x+8\)
\(\Leftrightarrow5x^2-2x-3=3x^2-11x+8\)
\(\Leftrightarrow5x^2-2x-3-3x^2+11x-8=0\)
\(\Leftrightarrow2x^2+9x-11=0\)
\(\Leftrightarrow2x^2+11x-2x-11=0\)
\(\Leftrightarrow x\left(2x+11\right)-\left(2x+11\right)=0\)
\(\Leftrightarrow\left(2x+11\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+11=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-11\\x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{11}{2}\\x=1\end{matrix}\right.\)
Vậy: \(S=\left\{-\dfrac{11}{2};1\right\}\)
b) Ta có: \(3x\left(25x+15\right)-35\left(5x+3\right)=0\)
\(\Leftrightarrow3x\cdot5\cdot\left(5x+3\right)-35\left(5x+3\right)=0\)
\(\Leftrightarrow15x\left(5x+3\right)-35\left(5x+3\right)=0\)
\(\Leftrightarrow\left(5x+3\right)\left(15x-35\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x+3=0\\15x-35=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=-3\\15x=35\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{5}\\x=\dfrac{7}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{-\dfrac{3}{5};\dfrac{7}{3}\right\}\)
c) Ta có: \(\left(2-3x\right)\left(x-11\right)=\left(3x-2\right)\left(2-5x\right)\)
\(\Leftrightarrow2x-22-3x^2+33x=6x-15x^2-4+10x\)
\(\Leftrightarrow-3x^2+35x-22=-15x^2+16x-4\)
\(\Leftrightarrow-3x^2+35x-22+15x^2-16x+4=0\)
\(\Leftrightarrow12x^2+19x-18=0\)
\(\Leftrightarrow12x^2+27x-8x-18=0\)
\(\Leftrightarrow3x\left(4x+9\right)-2\left(4x+9\right)=0\)
\(\Leftrightarrow\left(4x+9\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x+9=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=-9\\3x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{9}{4}\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{-\dfrac{9}{4};\dfrac{2}{3}\right\}\)
Cho pt : \(m^2-5x+m=0\) ( m là tham số )
a ) Gpt với m = 6
b ) Tìm m để pt có \(n_o\) \(x_1,x_2\) thỏa mãn : \(|x_1-x_2|=3\)
Mình sửa lại đề : x2 - 5x + m = 0 (1)
Với m = 6
Phương trình trở thành :
x2 - 5x + 6 = 0
\(\Delta=\left(-5\right)^2-4.1.6=1>0\)
=> Phương trình 2 nghiệm phân biệt
\(x_1=\dfrac{5+\sqrt{1}}{2}=3;x_2=\dfrac{5-\sqrt{1}}{2}=2\)
Tập nghiệm S = {3;2}
b) Với m = 0 có (1) <=> x2 - 5x = 0
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=0\end{matrix}\right.\)(loại)
Với \(m\ne0\) : có \(\Delta=25-4m\)
Phương trình có nghiệm khi \(\Delta\ge0\Leftrightarrow m\le\dfrac{25}{4}\)
Hệ thức Viete : \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=m\end{matrix}\right.\)
Khi đó |x1 - x2| = 3
<=> (x1 - x2)2 = 9
<=> (x1 + x2)2 - 4x1x2 = 9
<=> 52 - 4m = 9
<=> m = 4 (tm)
Vậy m = 4 thì thóa mãn yêu cầu đề
Gpt:
a. \(5x+2\sqrt{x+1}-\sqrt{1-x}=-3\)
\(5x+2\sqrt{x+1}-\sqrt{1-x}=-3\) \(\left(-1\le x\le1\right)\)
\(\Leftrightarrow\left(5x+3\right)+\dfrac{4\left(x+1\right)-\left(1-x\right)}{2\sqrt{x+1}+\sqrt{1-x}}=0\)
\(\Leftrightarrow\left(5x+3\right)+\dfrac{5x+3}{2\sqrt{x+1}+\sqrt{1-x}}=0\)
\(\Leftrightarrow\left(5x+3\right)\left(1+\dfrac{1}{2\sqrt{x+1}+\sqrt{1-x}}\right)=0\)
Pt \(1+\dfrac{1}{2\sqrt{x+1}+\sqrt{1-x}}=0\left(VT>0\right)\)
=> 5x + 3 = 0
<=> x = - 0,6 (nhận)
GPT với ẩn số là x:
\(\frac{a}{1-bx}=\frac{b}{1-ax}\)
Đẳng thức tương đương: \(a-a^2x=b-b^2x\Leftrightarrow a-b=x\left(a^2-b^2\right)\)
+) TH1: a=b hoặc a=-b thì 0=0.x, vậy phương trình có vô số nghiệm
+) TH2: \(a\ne b\) thì \(x=\frac{a-b}{\left(a-b\right)\left(a+b\right)}=\frac{1}{a+b}\)
ĐK: \(x\ne\frac{1}{a};\frac{1}{b}\)
pt <=> \(a-a^2x=b-b^2x\Leftrightarrow\left(a^2-b^2\right)x=a-b\)(1)
TH1: \(a^2-b^2=0\Leftrightarrow\orbr{\begin{cases}a=b\\a=-b\end{cases}}\)
Với a = b; Ta có: (1) trở thành: 0x = 0 => phương trình có vô số nghiệm
Với a = - b; Ta có: (1) trở thành: 0x = 2a \(\ne\)0 => phương trình vô nghiệm
TH2: \(\hept{\begin{cases}a\ne b\\a\ne-b\end{cases}}\)
Ta có: pt (1) <=> \(x=\frac{1}{a+b}\)
Vậy:....
Em nghĩ là nên giải thêm điều kiện \(\frac{1}{a+b}\ne\frac{1}{a};\frac{1}{a+b}\ne\frac{1}{b}\Rightarrow a,b\ne0\)
gpt :A= \(2x^2-5x-1=\sqrt{x+2}+\sqrt{4-x}\)
B= \(\sqrt{x^2-2x+5}+2\sqrt{4x+5}=x^3-2x^2+5x+4\)
GPT: \(\log_2\left(\sqrt{x^2-5x+5}+1\right)+\log_3\left(x^2-5x+7\right)=2\)
Đặt \(\sqrt{x^2-5x+5}=t>0\)
\(\Rightarrow log_2\left(t+1\right)+log_3\left(t^2+2\right)-2=0\)
Nhận thấy \(t=1\) là 1 nghiệm của pt
Xét hàm \(f\left(t\right)=log_2\left(t+1\right)+log_3\left(t^2+2\right)-2\)
\(f'\left(t\right)=\dfrac{1}{\left(t+1\right)ln2}+\dfrac{2t}{\left(t^2+2\right)ln3}>0\Rightarrow f\left(t\right)\) đồng biến
\(\Rightarrow f\left(t\right)\) có tối đa 1 nghiệm
\(\Rightarrow t=1\) là nghiệm duy nhất của pt
\(\Rightarrow\sqrt{x^2-5x+5}=1\Rightarrow\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)