Những câu hỏi liên quan
DF
Xem chi tiết
NL
27 tháng 12 2020 lúc 17:20

\(A\ge\dfrac{\left(x+y\right)^2}{2xy}+\dfrac{\sqrt{xy}}{x+y}\)

\(A\ge\dfrac{7\left(x+y\right)^2}{16xy}+\dfrac{\left(x+y\right)^2}{16xy}+\dfrac{\sqrt{xy}}{2\left(x+y\right)}+\dfrac{\sqrt{xy}}{2\left(x+y\right)}\)

\(A\ge\dfrac{7.4xy}{16xy}+3\sqrt[3]{\dfrac{\left(x+y\right)^2xy}{16.4.xy\left(x+y\right)^2}}=\dfrac{5}{2}\)

Dấu "=" xảy ra khi \(x=y\)

Bình luận (0)
TH
Xem chi tiết
DF
Xem chi tiết
NL
27 tháng 12 2020 lúc 17:12

\(\dfrac{\left(x+y+1\right)^2}{xy+x+y}\ge\dfrac{3\left(xy+x+y\right)}{xy+x+y}=3\)

\(\Rightarrow A=\dfrac{8\left(x+y+1\right)^2}{9\left(xy+x+y\right)}+\dfrac{\left(x+y+1\right)^2}{9\left(xy+x+y\right)}+\dfrac{xy+x+y}{\left(x+y+1\right)^2}\)

\(A\ge\dfrac{8}{9}.3+2\sqrt{\dfrac{\left(x+y+1\right)^2\left(xy+x+y\right)}{\left(xy+x+y\right)\left(x+y+1\right)^2}}=\dfrac{10}{3}\)

Dấu "=" xảy ra khi \(x=y=1\)

Bình luận (1)
TN
Xem chi tiết
VT
28 tháng 6 2016 lúc 9:43

3. 

P=(x+y)(x^2-xy+y^2)+xy

P=x^2+y^2-xy+xy

P=x^2+y^2

Bình luận (0)
PU
Xem chi tiết
HP
17 tháng 6 2016 lúc 11:23

Từ x-y=2=>x=y+2

a)Thay x=y+2 vào P ta có:

\(P=xy+4=\left(y+2\right)y+4=y^2+2y+4=\left(y^2+2y+1\right)+3=\left(y^2+2.y.1+1^2\right)+3\)

\(=\left(y+1\right)^2+3\ge3\) với mọi y

Dấu "=" xảy ra <=> \(\left(y+1\right)^2=0\) <=> \(y=-1\) <=> \(x=1\)

Vậy...........

b)Thay x=y+2 vào Q ta có:

\(Q=x^2+y^2-xy=\left(y+2\right)^2+y^2-\left(y+2\right).y=y^2+4y+4+y^2-y^2-2y\)

\(=y^2-2y+4=\left(y^2-2y+1\right)+3=\left(y^2-2.y.1+1^2\right)+3=\left(y-1\right)^2+3\ge3\) với mọi y

Dấu "=" xảy ra <=> y=1 <=> x=2

Vậy.................

Bình luận (0)
TN
Xem chi tiết
TN
Xem chi tiết
TD
27 tháng 6 2016 lúc 22:03

bài 2 nhân p vs x+y+xy rồi t định áp dụng bđt (x+y+z)(1/x+1/y+1/z)>=9 nhưng vướng

Bình luận (0)
TN
Xem chi tiết
TD
28 tháng 6 2016 lúc 9:30

bài 1 sai đề

Bình luận (0)
VH
Xem chi tiết
H24
Xem chi tiết
NL
24 tháng 3 2021 lúc 18:29

\(A=\dfrac{x^2+y^2}{xy}+\dfrac{xy}{x^2+y^2}=\dfrac{x^2+y^2}{4xy}+\dfrac{xy}{x^2+y^2}+\dfrac{3\left(x^2+y^2\right)}{4xy}\)

\(A\ge2\sqrt{\dfrac{\left(x^2+y^2\right)xy}{4xy\left(x^2+y^2\right)}}+\dfrac{3.2xy}{4xy}=\dfrac{5}{2}\)

Dấu "=" xảy ra khi \(x=y\)

\(C=\dfrac{\left(x+y\right)^2-4xy}{xy}+\dfrac{6xy}{\left(x+y\right)^2}=\dfrac{\left(x+y\right)^2}{xy}+\dfrac{6xy}{\left(x+y\right)^2}-4\)

\(C=\dfrac{3\left(x+y\right)^2}{8xy}+\dfrac{6xy}{\left(x+y\right)^2}+\dfrac{5\left(x+y\right)^2}{8xy}-4\)

\(C\ge2\sqrt{\dfrac{18xy\left(x+y\right)^2}{8xy\left(x+y\right)^2}}+\dfrac{5.4xy}{8xy}-4=\dfrac{3}{2}\)

Dấu "=" xảy ra khi \(x=y\)

Bình luận (1)