Violympic toán 9

DF

cho x,y>0. tìm GTNN của \(A=\dfrac{\left(x+y+1\right)^2}{xy+x+y}+\dfrac{xy+x+y}{\left(x+y+1\right)^2}\)

NL
27 tháng 12 2020 lúc 17:12

\(\dfrac{\left(x+y+1\right)^2}{xy+x+y}\ge\dfrac{3\left(xy+x+y\right)}{xy+x+y}=3\)

\(\Rightarrow A=\dfrac{8\left(x+y+1\right)^2}{9\left(xy+x+y\right)}+\dfrac{\left(x+y+1\right)^2}{9\left(xy+x+y\right)}+\dfrac{xy+x+y}{\left(x+y+1\right)^2}\)

\(A\ge\dfrac{8}{9}.3+2\sqrt{\dfrac{\left(x+y+1\right)^2\left(xy+x+y\right)}{\left(xy+x+y\right)\left(x+y+1\right)^2}}=\dfrac{10}{3}\)

Dấu "=" xảy ra khi \(x=y=1\)

Bình luận (1)

Các câu hỏi tương tự
DF
Xem chi tiết
LH
Xem chi tiết
QL
Xem chi tiết
ND
Xem chi tiết
ND
Xem chi tiết
MH
Xem chi tiết
DF
Xem chi tiết
LD
Xem chi tiết
BB
Xem chi tiết