Những câu hỏi liên quan
MK
Xem chi tiết
H24
2 tháng 10 2018 lúc 19:00

Bài này Linh làm được nì

Bình luận (0)
LN
2 tháng 10 2018 lúc 19:48

Ta có: 5a = 8b = 20c

mà BCNN(5,8,20) = 2. 5 = 40

nên \(\frac{5a}{40}=\frac{8b}{40}=\frac{20c}{40}\)

\(=>\frac{a}{8}=\frac{b}{5}=\frac{c}{2}\)

Theo tính chất dãy tỉ số bằng nhau, ta có : \(\frac{a}{8}=\frac{b}{5}=\frac{c}{2}=\frac{a-b-c}{8-5-2}=\frac{3}{1}=3\)

\(=>a=3\cdot8=24\)

             \(b=3\cdot5=15\)

              \(c=3\cdot2=6\)

Thay vào biểu thức, ta có: \(\left[\left(a-b\right)^2-c^3\right]\)\(=\left[\left(24-15\right)^2-6^3\right]\)

                                                                                      \(=-135⋮45\)

Vậy\(\left[\left(a-b\right)^2-c^3\right]⋮45\) khi a=24 ; b=15 ; c= 6

Bình luận (0)
BH
Xem chi tiết
NL
8 tháng 3 2023 lúc 23:04

Ta chứng minh BĐT sau:

\(\dfrac{1}{x^3+x+2}\ge\dfrac{-x^2+3}{8}\) với \(x>0\)

Thật vậy, BĐT tương đương:

\(\left(x^2-3\right)\left(x^3+x+2\right)+8\ge0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x^3+2x^2+x+2\right)\ge0\) (luôn đúng)

Áp dụng:

\(\Rightarrow VT\ge\dfrac{-a^2+3}{8}+\dfrac{-b^2+3}{8}+\dfrac{-c^2+3}{8}=\dfrac{9-\left(a^2+b^2+c^2\right)}{8}=\dfrac{3}{4}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (0)
CT
Xem chi tiết
WM
Xem chi tiết
H24
2 tháng 2 2017 lúc 23:28

yeubanh

Bình luận (0)
VL
Xem chi tiết
HS
Xem chi tiết
TN
Xem chi tiết
VT
9 tháng 11 2019 lúc 21:22

a) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\frac{5a}{5c}=\frac{8b}{8d}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{5a}{5c}=\frac{8b}{8d}=\frac{5a+8b}{5c+8d}\) (1)

\(\frac{5a}{5c}=\frac{8b}{8d}=\frac{5a-8b}{5c-8d}\) (2)

Từ (1) và (2) \(\Rightarrow\frac{5a+8b}{5c+8d}=\frac{5a-8b}{5c-8d}.\)

\(\Rightarrow\frac{5a+8b}{5a-8b}=\frac{5c+8d}{5c-8d}\left(đpcm\right).\)

b) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\frac{a^{10}}{c^{10}}=\frac{b^{10}}{d^{10}}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a^{10}}{c^{10}}=\frac{b^{10}}{d^{10}}=\frac{a^{10}+b^{10}}{c^{10}+d^{10}}.\)

\(\Rightarrow\frac{a^{10}}{c^{10}}=\frac{a^{10}+b^{10}}{c^{10}+d^{10}}\left(đpcm\right).\)

Chúc bạn học tốt!

Bình luận (0)
 Khách vãng lai đã xóa
H24
9 tháng 11 2019 lúc 21:23

a) Có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{5a+8b}{5c+8d}=\frac{5a-8b}{5c-8d}\\ \Rightarrow\frac{5a+8b}{5a-8b}=\frac{5c+8d}{5c-8d}\)

b) Có: \(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^{10}}{c^{10}}=\frac{b^{10}}{d^{10}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a^{10}}{c^{10}}=\frac{b^{10}}{d^{10}}=\frac{a^{10}+b^{10}}{c^{10}+d^{10}}\)

Bình luận (0)
 Khách vãng lai đã xóa
MS
Xem chi tiết
DD
Xem chi tiết
TC
5 tháng 9 2021 lúc 9:58

undefined

Bình luận (0)