Những câu hỏi liên quan
DT
Xem chi tiết
DH
5 tháng 6 2021 lúc 22:52

undefined

Bình luận (0)
NS
Xem chi tiết
NT
9 tháng 2 2022 lúc 16:34

a: Theo đề, ta có:

\(\left\{{}\begin{matrix}a+b=5\\2a+b=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=2\end{matrix}\right.\)

b: 

1: Thay x=-1 và y=3 vào (d), ta được:

\(2\cdot\left(-1\right)-a+1=3\)

=>-a-1=3

=>-a=4

hay a=-4

Bình luận (0)
ND
Xem chi tiết
NT
25 tháng 6 2023 lúc 10:44

a: Thay x=0 và y=-5 vào (d), ta được:

2(m+1)*0-m^2-4=-5

=>m^2+4=5

=>m=1 hoặc m=-1

b:

PTHĐGĐ là;

x^2-2(m+1)x+m^2+4=0

Δ=(2m+2)^2-4(m^2+4)

=4m^2+8m+4-4m^2-16=8m-12

Để PT có hai nghiệm phân biệt thì 8m-12>0

=>m>3/2

x1+x2=2m+2; x1x2=m^2+4

(2x1-1)(x2^2-2m*x2+m^2+3)=21

=>(2x1-1)[x2^2-x2(2m+2-2)+m^2+4-1]=21

=>(2x1-1)[x2^2+2x2-x2(x1+x2)+x1x2-1]=21

=>(2x1-1)(x2^2+2x2-x1x2-x2^2+x1x2-1]=21

=>(2x1-1)(2x2-1)=21

=>4x1x2-2(x1+x2)+1=21

=>4(m^2+4)-2(2m+2)+1=21

=>4m^2+16-4m-4-20=0

=>4m^2-4m-8=0

=>(m-2)(m+1)=0

=>m=2(nhận) hoặc m=-1(loại)

Bình luận (0)
PL
Xem chi tiết
CP
Xem chi tiết
NH
29 tháng 6 2015 lúc 17:39

ta có pt hoảnh độ giao điểm: \(ax^2=x-1\Leftrightarrow ax^2-x+1=0\)

P tiếp xúc d <=> PT trên có nghiệm kép <=> \(\Delta=0\Leftrightarrow1-4a=0\Leftrightarrow a=\frac{1}{4}\)

Bình luận (0)
HN
Xem chi tiết
NT
12 tháng 2 2023 lúc 14:30

a: Thay x=1 và y=3 vào (d), ta được:

m+3-m=3

=>3=3(luôn đúng)

b: PTHĐGĐ là:

x^2-mx-3+m=0

=>x^2-mx+m-3=0

Để (d) cắt (P) tại hai điểm phân biệt thì m-3<0

=>m<3

Bình luận (0)
BB
Xem chi tiết
NT
16 tháng 5 2022 lúc 21:33

Thay y=1 vào (P), ta được:

\(x^2=1\)

=>x=1 hoặc x=-1

Thay x=1 và y=1 vào (d), ta được:

\(m^2-1+3=1\)(vô lý)

Thay x=-1 và y=1 vào (d), ta được:

\(m^2-1-3=1\)

\(\Leftrightarrow m^2=5\)

hay \(m\in\left\{\sqrt{5};-\sqrt{5}\right\}\)

Bình luận (0)
H24
16 tháng 5 2022 lúc 21:35

tham khảo

Thay y=1 vào (P), ta được:

\(x^2=1\)

=>x=1 hoặc x=-1

Thay x=1 và y=1 vào (d), ta được:

\(m^2-1+3=1\)(vô lý)

Thay x=-1 và y=1 vào (d), ta được:

\(m^2-1-3=1\)

\(\Leftrightarrow m^2=5\)

hay \(m\in\left\{\sqrt{5};-\sqrt{5}\right\}\)

Bình luận (0)
NE
Xem chi tiết
NT
12 tháng 5 2021 lúc 19:16

b) Để (d) đi qua (0;-1) thì

Thay x=0 và y=-1 vào y=ax+b, ta được:

\(a\cdot0+b=-1\)

\(\Leftrightarrow b=-1\)

Vậy: (d): y=ax-1

Phương trình hoành độ giao điểm của (P) và (d) là:

\(\dfrac{1}{2}x^2=ax-1\)

\(\Leftrightarrow\dfrac{1}{2}x^2-ax+1=0\)

\(\Delta=a^2-4\cdot\dfrac{1}{2}\cdot1=a^2-2\)

Để (d) và (P) tiếp xúc với nhau thì \(\Delta=0\)

\(\Leftrightarrow a^2=2\)

hay \(a\in\left\{\sqrt{2};-\sqrt{2}\right\}\)

Vậy: Để (d) tiếp xúc với (P) và (d) đi qua (0;-1) thì \(\left(a,b\right)=\left\{\left(\sqrt{2};-1\right);\left(-\sqrt{2};-1\right)\right\}\)

Bình luận (0)
TT
Xem chi tiết
H24
16 tháng 3 2019 lúc 23:03

\(a,M\in\left(d\right)\Rightarrow a.0+b.2=-2\)

                      \(\Rightarrow b=-1\)

\(\Rightarrow\left(d\right)ax-y=-2\)

\(\Rightarrow\left(d\right)y=ax+2\)

Hoành độ giao điểm của (d) và (P) là nghiệm của phương trình

\(\frac{x^2}{4}=ax+2\)

\(\Leftrightarrow x^2-4ax-8=0\)(1)

Có \(\Delta'=4a^2+8>0\)

Nên pt (1) luôn có 2 nghiệm phân biệt 

=> (d) luôn cắt (P) tại 2 điểm phân biệt A và B

b, Gọi 2 điểm A và B có tọa độ là \(A\left(x_1;y_1\right);B\left(x_2;y_2\right)\)

Theo hệ thức Vi-ét \(\hept{\begin{cases}x_1+x_2=4a\\x_1x_2=-8\end{cases}}\)

Vì \(A;B\in\left(P\right)\Rightarrow\hept{\begin{cases}y_1=\frac{x_1^2}{4}\\y_2=\frac{x_2^2}{4}\end{cases}}\)

Ta có \(AB=\sqrt{\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2}\)

                \(=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2+\left(y_1+y_2\right)^2-4y_1y_2}\)

               \(=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2+\left(\frac{x_1^2+x_2^2}{4}\right)^2-4.\frac{x_1^2x_2^2}{4.4}}\)

              \(=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2+\frac{\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2}{4}-\frac{x_1^2x_2^2}{4}}\)

               \(=\sqrt{16a^2+32+\frac{\left(16a^2+16\right)^2}{4}-\frac{64}{4}}\)

             \(\ge\sqrt{16.0+32+\frac{\left(16.0+16\right)^2}{4}-\frac{64}{4}}=4\sqrt{5}\)

Dấu "=" <=> a = 0

Bình luận (0)