Những câu hỏi liên quan
NP
Xem chi tiết
NL
11 tháng 8 2020 lúc 8:51

1.

\(\Leftrightarrow f\left(x\right)=sin^4x+cos^4x-2m.sinx.cosx\ge0\) ;\(\forall x\in R\)

\(f\left(x\right)=\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x-2m.sinx.cosx\)

\(=-\frac{1}{2}sin^22x-m.sin2x+1\)

Đặt \(sin2x=t\Rightarrow\left|t\right|\le1\)

\(f\left(t\right)=-\frac{1}{2}t^2-mt+1\ge0\) ; \(\forall t\in\left[-1;1\right]\)

\(\Leftrightarrow\min\limits_{\left[-1;1\right]}f\left(t\right)\ge0\)

\(a=-\frac{1}{2}< 0\Rightarrow\min\limits f\left(t\right)\) xảy ra tại 1 trong 2 đầu mút

\(f\left(-1\right)=m+\frac{1}{2}\) ; \(f\left(1\right)=\frac{1}{2}-m\)

TH1: \(\left\{{}\begin{matrix}m+\frac{1}{2}\ge\frac{1}{2}-m\\\frac{1}{2}-m\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ge0\\m\le\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow0\le m\le\frac{1}{2}\)

TH2: \(\left\{{}\begin{matrix}\frac{1}{2}-m\ge m+\frac{1}{2}\\m+\frac{1}{2}\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\le0\\m\ge-\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow-\frac{1}{2}\le m\le\frac{1}{2}\)

Bình luận (0)
NL
11 tháng 8 2020 lúc 8:54

2. ĐKXĐ:

a. \(\left\{{}\begin{matrix}cosx\ne0\\2-cosx+tan^2x\ge0\left(luôn-đúng\right)\end{matrix}\right.\)

\(\Rightarrow x\ne\frac{\pi}{2}+k\pi\)

(BPT dưới luôn đúng do \(\left\{{}\begin{matrix}tan^2x\ge0\\2-cosx>0\end{matrix}\right.\) với mọi x)

b. \(sin2x-sinx+3\ge0\)

\(\Leftrightarrow\left(sin2x+2\right)+\left(1-sinx\right)\ge0\)

Do \(\left\{{}\begin{matrix}sin2x\ge-1\\sinx\le1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}sin2x+2>0\\1-sinx\ge0\end{matrix}\right.\)

\(\Rightarrow\) BPT luôn thỏa mãn hay hàm số xác định trên R

Bình luận (0)
NS
Xem chi tiết
AH
2 tháng 1 2021 lúc 13:37

Lời giải:ĐKXĐ: \(\left\{\begin{matrix} 6-x\geq 0\\ x-1\geq 0\\ 1+\sqrt{x-1}\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\leq 6\\ x\geq 1\end{matrix}\right.\) hay $x\in [1;6]$ 

Đáp án D

Bình luận (0)
NS
Xem chi tiết
HN
Xem chi tiết
NH
Xem chi tiết
HP
22 tháng 10 2020 lúc 19:31

\(\left\{{}\begin{matrix}\sqrt{x-2\sqrt{x-1}}\ne0\\x-2\sqrt{x-1}\ge0\\x-1\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne2\\\left(\sqrt{x-1}-1\right)^2\ge0\\x\ge1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne2\\x\in R\\x\ge1\end{matrix}\right.\)

\(\Rightarrow TXĐ:D=[1;+\infty)\cup\left\{2\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
LK
Xem chi tiết
HP
25 tháng 6 2021 lúc 15:30

1. \(sin\left(\dfrac{\pi}{3}-x\right)\ne0\Leftrightarrow\dfrac{\pi}{3}-x\ne k\pi\Leftrightarrow x\ne\dfrac{\pi}{3}-k\pi\)

2. \(cos2x\ne0\Leftrightarrow2x\ne\dfrac{\pi}{2}+k\pi\Leftrightarrow x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)

3. \(\sqrt{1+sinx}-\sqrt{2}\ge0\Leftrightarrow1+sinx\ge2\Leftrightarrow sinx\ge1\Leftrightarrow sinx=1\Leftrightarrow x=\dfrac{\pi}{2}+k2\pi\)

4. \(\sqrt{2-2cosx}-2\ne0\Leftrightarrow2-2cosx\ne4\Leftrightarrow cosx\ne-1\Leftrightarrow x\ne\pi+k2\pi\)

5. \(1-\sqrt{1+sin3x}\ne0\Leftrightarrow sin3x\ne0\Leftrightarrow3x\ne k\pi\Leftrightarrow x\ne\dfrac{k\pi}{3}\)

Bình luận (2)
MN
Xem chi tiết
NL
30 tháng 7 2021 lúc 17:36

2.1

a.

\(\Leftrightarrow sinx-cosx=\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow\sqrt{2}sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{4}=\dfrac{\pi}{6}+k2\pi\\x-\dfrac{\pi}{4}=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5\pi}{12}+k2\pi\\x=\dfrac{13\pi}{12}+k2\pi\end{matrix}\right.\)

Bình luận (0)
NL
30 tháng 7 2021 lúc 17:38

b.

\(cosx-\sqrt{3}sinx=1\)

\(\Leftrightarrow\dfrac{1}{2}cosx-\dfrac{\sqrt{3}}{2}sinx=\dfrac{1}{2}\)

\(\Leftrightarrow cos\left(x+\dfrac{\pi}{3}\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{3}=\dfrac{\pi}{3}+k2\pi\\x+\dfrac{\pi}{3}=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=-\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\)

Bình luận (0)
NL
30 tháng 7 2021 lúc 17:41

c.

\(\sqrt{3}sin\dfrac{x}{3}+cos\dfrac{x}{2}=\sqrt{2}\)

Câu này đề đúng không nhỉ? Nhìn thấy có vẻ không đúng lắm

d.

\(cosx-sinx=1\)

\(\Leftrightarrow\sqrt{2}cos\left(x+\dfrac{\pi}{4}\right)=1\)

\(\Leftrightarrow cos\left(x+\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{4}=\dfrac{\pi}{4}+k2\pi\\x+\dfrac{\pi}{4}=-\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=-\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\)

Bình luận (1)
NS
Xem chi tiết
H24
Xem chi tiết