Những câu hỏi liên quan
NM
Xem chi tiết
NL
19 tháng 2 2022 lúc 0:14

\(\Delta'=4m^2-2\left(2m^2-1\right)=2>0\Rightarrow\) pt luôn có 2 nghiệm pb

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=\dfrac{2m^2-1}{2}\end{matrix}\right.\)

Do \(x_1\) là nghiệm nên:

\(2x_1^2-4mx_1+2m^2-1=0\Rightarrow x_1^{2014}\left(2x_1^2-4mx_1+2m^2-1\right)=0\)

Do \(x_2\) là nghiệm nên:

\(2x_2^2-4mx_2+2m^2-1=0\Rightarrow2x_2^2+2m^2-1=4mx_2\)

Bài toán trở thành:

\(\left(0+1\right)\left(4mx_2+4mx_1-8\right)< 0\)

\(\Leftrightarrow m\left(x_1+x_2\right)-2< 0\)

\(\Leftrightarrow2m^2-2< 0\)

\(\Leftrightarrow-1< m< 1\)

Bình luận (0)
BB
Xem chi tiết
KH
Xem chi tiết
NT
11 tháng 4 2023 lúc 22:09

Δ=2^2-4(m-3)

=4-4m+12=16-4m

Để phương trình có hai nghiệm phân biệt thì 16-4m>0

=>m<4

m(x1^3+x2^3)+(x1*x2)^2=9

=>m[(x1+x2)^3-3x1x2(x1+x2)]+(m-3)^2=9

=>m[(-2)^3-3(m-3)*(-2)]+(m-3)^2=9

=>m[-8+6(m-3)]+(m-3)^2=9

=>m^2-6m+9-9+m[-8+6m-18]=0

=>m^2-6m+m[6m-26]=0

=>m^2-6m+6m^2-26m=0

=>7m^2-32m=0

=>m=0(nhận) hoặc m=32/7(loại)

Bình luận (1)
NM
Xem chi tiết
NM
4 tháng 1 2022 lúc 9:29

PT có 2 nghiệm phân biệt \(\Leftrightarrow\Delta=\left(2m-3\right)^2-4\left(m-3\right)=9>0\)

Vậy PT có 2 nghiệm phân biệt với mọi m

Ta có \(\left[{}\begin{matrix}x_1=\dfrac{2m-3+3}{2}=m\\x_2=\dfrac{2m-3-3}{2}=m-3\end{matrix}\right.\)

Ta thấy \(m>m-3\) nên \(1< m-3< m< 6\Leftrightarrow4< m< 6\)

Vậy \(4< m< 6\)  thỏa yêu cầu đề

Bình luận (0)
HB
Xem chi tiết
NL
21 tháng 8 2021 lúc 20:55

\(\Delta'=m^2+1\Rightarrow\left\{{}\begin{matrix}x_1=m+1+\sqrt{m^2+1}\\x_2=m+1-\sqrt{m^2+1}\end{matrix}\right.\)

(Do \(m+1-\sqrt{m^2+1}< \sqrt{m^2+1}+1-\sqrt{m^2+1}< 4\) nên nó ko thể là nghiệm \(x_1\))

Từ điều kiện \(x_1\ge4\Rightarrow m+1+\sqrt{m^2+1}\ge4\Rightarrow\sqrt{m^2+1}\ge3-m\)

\(\Rightarrow\left[{}\begin{matrix}m\ge3\\\left\{{}\begin{matrix}m< 3\\m^2+1\ge m^2-6m+9\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m\ge\dfrac{4}{3}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m\end{matrix}\right.\)

\(x_1^2=9x_2+10\Leftrightarrow x_1\left(x_1+x_2\right)-x_1x_2=9x_2+10\)

\(\Leftrightarrow2\left(m+1\right)x_1-2m=9x_2+10\)

\(\Leftrightarrow2\left(m+1\right)x_1-2m=9\left(2\left(m+1\right)-x_1\right)+10\)

\(\Leftrightarrow\left(2m+11\right)x_1=20m+28\Rightarrow x_1=\dfrac{20m+28}{2m+11}\) 

\(\Rightarrow x_2=2\left(m+1\right)-x_1=\dfrac{4m^2+6m-6}{2m+11}\)

Thế vào \(x_1x_2=2m\)

\(\Rightarrow\left(\dfrac{20m+28}{2m+11}\right)\left(\dfrac{4m^2+6m-6}{2m+11}\right)=2m\)

\(\Leftrightarrow\left(3m-4\right)\left(12m^2+40m+21\right)=0\)

\(\Leftrightarrow m=\dfrac{4}{3}\) (do \(12m^2+40m+21>0;\forall m\ge\dfrac{4}{3}\))

Bình luận (0)
SS
Xem chi tiết
H24
25 tháng 6 2021 lúc 8:29

ĐK:`x_1,x_2 ne 0=>x_1.x_2 ne 0`

`=>-2m-1 ne 0=>m ne -1/2`

Ta có:`a=1,b=2m,c=-2m-1`

`=>a+b+c=1+2m-2m-1=0`

`<=>` \(\left[ \begin{array}{l}x=1\\x=-2m-1\end{array} \right.\) 

PT có 2 nghiệm pn

`=>-2m-1 ne 1`

`=>-2m ne 2`

`=>m ne -1`

Nếu `x_1=1,x_2=-2m-1`

`pt<=>6=1+1/(-2m-1)`

`<=>5=1/(-2m-1)`

`<=>2m+1=-1/5`

`<=>2m=-6/5`

`<=>m=-3/5(tm)`

Nếu `x_2=1,x_1=-2m-1`

`pt<=>6/(-2m-1)=-2m-1+1=-2m`

`<=>6/(2m+1)=2m`

`<=>3/(2m+1)=m`

`<=>2m^2+m-3=0`

`a+b+c=0`

`=>m_1=1(tm),m_2=-c/a=-3/2(tm)`

Vậy `m in {-3/5,1,-3/2}` thì ....

Bình luận (0)
HB
Xem chi tiết
NM
17 tháng 6 2022 lúc 22:26

Cái này phân tích đề ra là lm được bạn nhé

 

Bình luận (0)
TV
Xem chi tiết
NT
31 tháng 3 2023 lúc 22:03

x1+x2=2m-2

2x1-x2=2

=>3x1=2m và 2x1-x2=2

=>x1=2m/3 và x2=4m/3-2

x1*x2=-2m+1

=>8/9m^2-4/3m+2m-1=0

=>8/9m^2+2/3m-1=0

=>8m^2+6m-9=0

=>m=3/4 hoặc m=-3/2

Bình luận (0)
NA
31 tháng 3 2023 lúc 22:05

\(x^2-2\left(m-1\right)x-2m+1=0\left(1\right)\)

Để phương trình (1) có 2 nghiệm phân biệt thì:

\(\Delta>0\Rightarrow\left[2\left(m-1\right)\right]^2-4\left(-2m+1\right)>0\)

\(\Leftrightarrow4\left(m-1\right)^2+8m-4>0\)

\(\Leftrightarrow4m^2-8m+4+8m-4>0\)

\(\Leftrightarrow4m^2>0\Leftrightarrow m\ne0\)

Vậy với \(\forall m\ne0\) thì phương trình (1) có 2 nghiệm phân biệt.

Theo định lí Viete cho phương trình (1) ta có:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-2m+1\end{matrix}\right.\)

Ta có \(2x_1-x_2=2\Rightarrow\left\{{}\begin{matrix}2\left(x_1+x_2\right)-2=3x_2\left(1'\right)\\\left(x_1+x_2\right)+2=3x_1\left(2'\right)\end{matrix}\right.\)

Lấy (1') nhân cho (2') ta được:

\(\left[2\left(x_1+x_2\right)-2\right]\left[\left(x_1+x_2\right)+2\right]=9x_1x_2\)

\(\Rightarrow\left[2.2\left(m-1\right)-2\right]\left[2\left(m-1\right)+2\right]=9\left(-2m+1\right)\)

\(\Leftrightarrow\left(4m-6\right).2m=-18m+9\)

\(\Leftrightarrow8m^2+6m-9=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{3}{4}\\m=\dfrac{-3}{2}\end{matrix}\right.\)

Thử lại ta có m=3/4 hay m=-3/2

 

Bình luận (0)
H24
Xem chi tiết