NM

Cho PT \(2x^2-4mx+2m^2-1=0\). Tìm $m$ để PT có 2 nghiệm $x_1,x_2$ phân biệt thỏa:

\(\left(2x_1^{2016}-4mx_1^{2015}+\left(2m^2-1\right)x_1^{2014}+1\right)\left(2x_2^2+4mx_1+2m^2-9\right)< 0\)

NL
19 tháng 2 2022 lúc 0:14

\(\Delta'=4m^2-2\left(2m^2-1\right)=2>0\Rightarrow\) pt luôn có 2 nghiệm pb

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=\dfrac{2m^2-1}{2}\end{matrix}\right.\)

Do \(x_1\) là nghiệm nên:

\(2x_1^2-4mx_1+2m^2-1=0\Rightarrow x_1^{2014}\left(2x_1^2-4mx_1+2m^2-1\right)=0\)

Do \(x_2\) là nghiệm nên:

\(2x_2^2-4mx_2+2m^2-1=0\Rightarrow2x_2^2+2m^2-1=4mx_2\)

Bài toán trở thành:

\(\left(0+1\right)\left(4mx_2+4mx_1-8\right)< 0\)

\(\Leftrightarrow m\left(x_1+x_2\right)-2< 0\)

\(\Leftrightarrow2m^2-2< 0\)

\(\Leftrightarrow-1< m< 1\)

Bình luận (0)