\(\Delta'=4m^2-2\left(2m^2-1\right)=2>0\Rightarrow\) pt luôn có 2 nghiệm pb
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=\dfrac{2m^2-1}{2}\end{matrix}\right.\)
Do \(x_1\) là nghiệm nên:
\(2x_1^2-4mx_1+2m^2-1=0\Rightarrow x_1^{2014}\left(2x_1^2-4mx_1+2m^2-1\right)=0\)
Do \(x_2\) là nghiệm nên:
\(2x_2^2-4mx_2+2m^2-1=0\Rightarrow2x_2^2+2m^2-1=4mx_2\)
Bài toán trở thành:
\(\left(0+1\right)\left(4mx_2+4mx_1-8\right)< 0\)
\(\Leftrightarrow m\left(x_1+x_2\right)-2< 0\)
\(\Leftrightarrow2m^2-2< 0\)
\(\Leftrightarrow-1< m< 1\)
Đúng 5
Bình luận (0)