Những câu hỏi liên quan
H24
Xem chi tiết
H24
23 tháng 11 2019 lúc 18:28

\(\frac{a}{b}=\frac{c}{d}\\ \Rightarrow\frac{a}{c}=\frac{b}{d}\\ \Rightarrow\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\\ \Rightarrow\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}=\left(\frac{a-b}{c-d}\right)^{2013}\left(1\right)\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}=\frac{a^{2013}+b^{2013}}{c^{2013}+d^{2013}}\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow\left(\frac{a-b}{c-d}\right)^{2013}=\frac{a^{2013}+b^{2013}}{c^{2013}+d^{2013}}\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NT
24 tháng 10 2021 lúc 21:30

a: \(\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Leftrightarrow\dfrac{a}{b}-1=\dfrac{c}{d}-1\)

hay \(\dfrac{a-b}{b}=\dfrac{c-d}{d}\)

Bình luận (0)
AC
Xem chi tiết
KD
7 tháng 11 2019 lúc 21:43
https://i.imgur.com/z4bn8DU.jpg
Bình luận (0)
 Khách vãng lai đã xóa
VT
7 tháng 11 2019 lúc 21:47

Ta có: \(\frac{a+b}{b+c}=\frac{c+d}{d+a}.\)

\(\Rightarrow\frac{a+b}{c+d}=\frac{b+c}{d+a}\)

\(\Rightarrow\frac{a+b}{c+d}+1=\frac{b+c}{d+a}+1.\)

\(\Rightarrow\frac{a+b}{c+d}+\frac{c+d}{c+d}=\frac{b+c}{d+a}+\frac{d+a}{d+a}.\)

\(\Rightarrow\frac{a+b+c+d}{c+d}=\frac{b+c+d+a}{d+a}\)

Nếu \(a+b+c+d\ne0.\)

\(\Rightarrow c+d=d+a\)

\(\Rightarrow c=a\left(đpcm1\right).\)

Nếu \(a+b+c+d=0\) thì hợp với đề.

\(\Rightarrow a+b+c+d=0\left(đpcm2\right).\)

Chúc bạn học tốt!

Bình luận (0)
 Khách vãng lai đã xóa
QL
Xem chi tiết
HM
16 tháng 9 2023 lúc 22:07

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{b} = \frac{c}{d} = \frac{{a - c}}{{b - d}}\); \(\frac{a}{b} = \frac{c}{d} = \frac{{a + 2c}}{{b + 2d}}\)

Như vậy, \(\frac{{a - c}}{{b - d}} = \frac{{a + 2c}}{{b + 2d}}\) (đpcm)

Bình luận (0)
MM
Xem chi tiết
H24
18 tháng 10 2019 lúc 22:09

Có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Đặt \(\frac{a}{c}=\frac{b}{d}=k\left(1\right)\\ \Rightarrow\left\{{}\begin{matrix}a=ck\\b=dk\end{matrix}\right.\)

\(\frac{a-b}{c-d}=\frac{ck-dk}{c-d}=\frac{k\left(c-d\right)}{c-d}=k\left(2\right)\)

(1)(2) \(\Rightarrow\frac{a}{c}=\frac{a-b}{c-d}\)

Bình luận (0)
 Khách vãng lai đã xóa
QN
Xem chi tiết
OO
Xem chi tiết
HQ
8 tháng 8 2017 lúc 16:01

Giải:

Từ \(\left\{{}\begin{matrix}b^2=ac\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\\c^2=bd\Rightarrow\dfrac{b}{c}=\dfrac{c}{d}\end{matrix}\right.\) \(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)

Theo tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b-c}{b+c-d}\)

\(\Rightarrow\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{\left(a+b-c\right)^3}{\left(b+c-d\right)^3}\left(1\right)\)

\(\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3-c^3}{b^3+c^3-d^3}\left(2\right)\)

Kết hợp \(\left(1\right)\)\(\left(2\right)\) suy ra:

\(\dfrac{a^3+b^3-c^3}{b^3+c^3-d^3}=\dfrac{\left(a+b-c\right)^3}{\left(b+c-d\right)^3}\) (Đpcm)

Bình luận (0)
NU
Xem chi tiết
PT
1 tháng 1 2018 lúc 15:03

Ta có: 

\(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow ad=bc\)

\(\Rightarrow ac-ad=ac-bc\)

\(\Rightarrow a\left(c-d\right)=c\left(a-b\right)\)

\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)

Vậy \(\frac{a}{a-b}=\frac{c}{c-d}\)

Bình luận (0)
HH
1 tháng 1 2018 lúc 20:58

Ta có :

\(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow ad=bc\)

\(\Rightarrow ac-ad=ac-bc\)

\(\Rightarrow a\left(c-d\right)=c\left(a-b\right)\)

\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)

\(KL:\frac{a}{a-b}=\frac{c}{c-d}\)

Bình luận (0)
KN
3 tháng 1 2019 lúc 9:13

\(\text{Ta có : }\frac{a}{b}=\frac{c}{d}\left(a,b,c\ne0;a\ne b\ne c\ne d\right)\)

\(\Rightarrow ad=cb\left(\text{tính chất tỉ lệ thức}\right)\)

\(\Rightarrow ac-ad=ac-cb\left(\text{tính chất của đẳng thức}\right)\)

\(\Rightarrow a\left(c-d\right)=c\left(a-b\right)\)

\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\left(đpcm\right)\)

Bình luận (0)
ER
Xem chi tiết
ZD
2 tháng 12 2016 lúc 5:36

Đặt\(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk ;c=dk\)

\(\Rightarrow\frac{a-b}{a}=\frac{bk-b}{bk}=\frac{b\left(k-1\right)}{bk}=\frac{k-1}{k}\left(1\right)\)

     \(\frac{c-d}{d}=\frac{dk-d}{kd}=\frac{d\left(k-1\right)}{kd}=\frac{k-1}{k}\left(2\right)\)

Từ (1) và (2)=> \(\frac{a-b}{a}=\frac{c-d}{c}\)

Bình luận (0)