Những câu hỏi liên quan
NC
Xem chi tiết
TO
Xem chi tiết
TO
11 tháng 10 2018 lúc 14:48

Phùng Hà ChâuThảo Phương muốn đặt tên nhưng chưa nghĩ ra bạn nào tốt nghĩ giùm mkNguyễn Anh ThưKhánh Như Trương NgọcTrần Ánh ThuKagamine Len love Vocaloid02Ten Hoànghuyền thoại đêm trăngNguyễn Thị Kiều Duyên

Bình luận (0)
HT
11 tháng 10 2018 lúc 20:08

Gọi b1, b2 là nồng độ 2 dd NaOH, a là nồng độ dd H2SO4
Khi trộn 1l B1 vs 1l B2 được 2l dd chứa (b1+b2) mol NaOH
H2SO4 + 2NaOH--> Na2SO4+2H2O
Vì 2 l H2SO4 có 2a mol => b1+b2=4a
Trộn 2l B1 vs 1l B2 thì được 3l dd chứa (2b1+b2) mol NaOH
trung hòa 30ml Y cần 32,5mlA (có 3,25a mol)=> 2b1+b2=6,5a
ta có hệ
b1+b2=4a
2b1+b2=6,5a
ta đuợc
b1=2,5a và b2=1,5a
khi trung hòa 70ml dung dịch Z tạo ra thì cần 67,5ml A
=>khi trung hòa 7l dung dịch Z tạo ra thì cần 67,5l A (chứa 6,75a mol H2SO4)
Theo pt, H2SO4: NaOH =1:2
=>nNaOH trong 7l Z=13,5a
Gọi V 2 dd NaOH cần trộn là x,y(l)
=> 2,5ax + 1,5ay=13,5a, mà x+y=7=> x/y=3/4

Bình luận (0)
TC
Xem chi tiết
AH
30 tháng 11 2021 lúc 16:47

Bạn cần viết đề bằng công thức toán (biểu tượng $\sum$ bên trái khung soạn thảo) để được hỗ trợ tốt hơn.

Bình luận (1)
NA
Xem chi tiết
DT
12 tháng 6 2023 lúc 20:35

Sửa đề : \(\dfrac{a^2}{a^2+b}+\dfrac{b^2}{b^2+a}\le1\\ \) (*)

\(< =>\dfrac{a^2\left(b^2+a\right)+b^2\left(a^2+b\right)}{\left(a^2+b\right)\left(b^2+a\right)}\le1\\ < =>a^2b^2+a^3+b^2a^2+b^3\le\left(a^2+b\right)\left(b^2+a\right)\) ( Nhân cả 2 vế cho `(a^{2}+b)(b^{2}+a)>0` )

\(< =>a^3+b^3+2a^2b^2\le a^2b^2+b^3+a^3+ab\\ < =>a^2b^2\le ab\\ < =>ab\le1\) ( Chia 2 vế cho `ab>0` )

Do a,b >0 

Nên áp dụng BDT Cô Si :

\(2\ge a+b\ge2\sqrt{ab}< =>\sqrt{ab}\le1\\ < =>ab\le1\)

Do đó (*) luôn đúng

Vậy ta chứng minh đc bài toán

Dấu "=" xảy ra khi : \(a=b>0,a+b=2< =>a=b=1\)

Bình luận (0)
LH
22 tháng 7 2023 lúc 19:27

a Sửa đề : Chứng minh \(\dfrac{a^2}{a^2+b}\)+\(\dfrac{b^2}{b^2+a}\)\(\le\) 1 ( Đề thi vào 10 Hà Nội).

Bất đẳng thức trên tương đương : 

\(\dfrac{a^2+b-b}{a^2+b}\)+\(\dfrac{b^2+a-a}{b^2+a}\)\(\le\)1

\(\Leftrightarrow\) 1 - \(\dfrac{b}{a^2+b}\)+ 1 - \(\dfrac{a}{b^2+a}\)\(\le\)1

\(\Leftrightarrow\)1 - \(\dfrac{b}{a^2+b}\) - \(\dfrac{a}{b^2+a}\)\(\le\)0

\(\Leftrightarrow\)\(\dfrac{b}{a^2+b}\)\(\dfrac{a}{b^2+a}\)\(\le\)-1

\(\Leftrightarrow\)\(\dfrac{a}{b^2+a}\)\(\dfrac{b}{a^2+b}\)\(\ge\)1

Xét VT = \(\dfrac{a^2}{ab^2+a^2}\)\(\dfrac{b^2}{a^2b+b^2}\)\(\ge\)\(\dfrac{\left(a+b\right)^2}{ab^2+a^2+a^2b+b^2}\) (Cauchy - Schwarz)

\(\dfrac{\left(a+b\right)^2}{ab\left(b+a\right)+a^2+b^2}\)

\(\ge\)\(\dfrac{\left(a+b\right)^2}{2ab+a^2+b^2}\)

\(\dfrac{\left(a+b\right)^2}{\left(a+b\right)^2}\)= 1

Vậy BĐT được chứng minh

Dấu '=' xảy ra \(\Leftrightarrow\)a = b = 1

Bình luận (0)
CH
Xem chi tiết
H24
21 tháng 6 2017 lúc 15:53

Áp dụng BĐT bunyakovsky:

\(7-a=b+c+d\le\sqrt{3\left(b^2+c^2+d^2\right)}=\sqrt{3\left(13-a^2\right)}\)

\(\Leftrightarrow\left(7-a\right)^2\le3\left(13-a^2\right)\)

\(\Leftrightarrow49-14a+a^2\le39-3a^2\)

\(\Leftrightarrow4a^2-14a+10\le0\Leftrightarrow2\left(a-1\right)\left(2a-5\right)\le0\)

\(\Leftrightarrow1\le a\le\dfrac{5}{2}\)

Vậy \(A_{max}=\dfrac{5}{2}\)khi \(b=c=d=\dfrac{3}{2}\)

Bình luận (0)
NN
21 tháng 6 2017 lúc 8:28

2

Bình luận (0)
NT
Xem chi tiết
NL
10 tháng 8 2021 lúc 19:44

Đề bài sai

Phản ví dụ:

\(a=-1;b=1\) thì \(\left(a^2+b^2\right)\left(a^4+b^4\right)=4\)

Trong khi \(\left(a+b\right)\left(a^5+b^5\right)=0\)

\(4< 0\) là sai

BĐT này chỉ đúng với a;b là các số thực không âm (hoặc dương), hoặc cùng dấu

Bình luận (0)
3Q
Xem chi tiết
PT
24 tháng 12 2021 lúc 15:38

B

Bình luận (0)
CV
Xem chi tiết
H24
9 tháng 11 2019 lúc 22:08
https://i.imgur.com/vrJEjPv.jpg
Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
9 tháng 3 2017 lúc 8:18

Vì a ≥ 0 nên √a xác định, b  ≥  0 nên  b  xác định

Ta có:  a - b 2 ≥  0 ⇔ a - 2 a b  + b  ≥  0

⇒ a + b  ≥  2 a b  ⇔  a + b 2 ≥ a b

Dấu đẳng thức xảy ra khi a = b.

Bình luận (0)