Bài 1: Căn bậc hai

CH

Cho a, b, c, d thõa a + b + c + d = 7 và a2 + b2 + c2 + d2 = 13. Tìm max a?

H24
21 tháng 6 2017 lúc 15:53

Áp dụng BĐT bunyakovsky:

\(7-a=b+c+d\le\sqrt{3\left(b^2+c^2+d^2\right)}=\sqrt{3\left(13-a^2\right)}\)

\(\Leftrightarrow\left(7-a\right)^2\le3\left(13-a^2\right)\)

\(\Leftrightarrow49-14a+a^2\le39-3a^2\)

\(\Leftrightarrow4a^2-14a+10\le0\Leftrightarrow2\left(a-1\right)\left(2a-5\right)\le0\)

\(\Leftrightarrow1\le a\le\dfrac{5}{2}\)

Vậy \(A_{max}=\dfrac{5}{2}\)khi \(b=c=d=\dfrac{3}{2}\)

Bình luận (0)
NN
21 tháng 6 2017 lúc 8:28

2

Bình luận (0)

Các câu hỏi tương tự
KH
Xem chi tiết
VH
Xem chi tiết
NQ
Xem chi tiết
CN
Xem chi tiết
PP
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
NN
Xem chi tiết
PP
Xem chi tiết