Những câu hỏi liên quan
CX
Xem chi tiết
NT
6 tháng 11 2021 lúc 20:58

b: Để hàm số đồng biến thì 2-m>0

hay m<2

Bình luận (0)
VH
Xem chi tiết
NT
12 tháng 9 2021 lúc 23:09

a: Để hàm số đồng biến thì m-1>0

hay m>1

Bình luận (0)
H24
Xem chi tiết
PN
23 tháng 11 2021 lúc 14:02

Đây nhé bn !undefined

Bình luận (0)
 Khách vãng lai đã xóa
CX
Xem chi tiết
NT
6 tháng 11 2021 lúc 21:20

b: Để hàm số đồng biến thì 2-m>0

hay m<2

Bình luận (0)
TL
Xem chi tiết
DH
12 tháng 7 2021 lúc 12:16

undefined

Bình luận (0)
NT
12 tháng 7 2021 lúc 13:01

a) Để hàm số đồng biến thì k(k-3)>0

\(\Leftrightarrow\left[{}\begin{matrix}k>3\\k< 0\end{matrix}\right.\)

b) Để hàm số nghịch biến thì k(k-3)<0

hay 0<x<3

Bình luận (0)
TA
Xem chi tiết
PN
23 tháng 11 2021 lúc 13:59

undefined

Bình luận (0)
AM
Xem chi tiết
NT
19 tháng 12 2021 lúc 9:27

b: Để hàm số đồng biến thì m-1>0

hay m>1

Bình luận (2)
PB
Xem chi tiết
CT
13 tháng 12 2017 lúc 10:21

a) y = –( m 2  + 5m) x 3  + 6m x 2  + 6x – 5

y′ = –3( m 2  + 5m) x 2  + 12mx + 6

Hàm số đơn điệu trên R khi và chỉ khi y’ không đổi dấu.

Ta xét các trường hợp:

    +) m2 + 5m = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

– Với m = 0 thì y’ = 6 nên hàm số luôn đồng biến.

– Với m = -5 thì y’ = -60x + 6 đổi dấu khi x đi qua .

    +) Với  m 2  + 5m ≠ 0. Khi đó, y’ không đổi dấu nếu

Δ' = 36 m 2  + 18( m 2  + 5m) ≤ 0 ⇔ 3 m 2  + 5m ≤ 0 ⇔ –5/3 ≤ m ≤ 0

– Với điều kiện đó, ta có –3( m 2  + 5m) > 0 nên y’ > 0 và do đó hàm số đồng biến trên R.

Vậy với điều kiện –5/3 ≤ m ≤ 0 thì hàm số đồng biến trên R.

b) Nếu hàm số đạt cực đại tại x = 1 thì y’(1) = 0. Khi đó:

y′(1) = –3 m 2  – 3m + 6 = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Mặt khác, y” = –6( m 2  + 5m)x + 12m

    +) Với m = 1 thì y’’ = -36x + 12. Khi đó, y’’(1) = -24 < 0 , hàm số đạt cực đại tại x = 1.

    +) Với m = -2 thì y’’ = 36x – 24. Khi đó, y’’(1) = 12 > 0, hàm số đạt cực tiểu tại x = 1.

 

Vậy với m = 1 thì hàm số đạt cực đại tại x = 1.

Bình luận (0)
MA
Xem chi tiết
H24
28 tháng 11 2018 lúc 9:12

a, Vì \(-6< 0\)nên hàm số (1) là hàm nghịch biến

Vì \(A\left(-1;6\right)\in\left(1\right)\)

\(\Rightarrow6=\left(-6\right).\left(-1\right)+m-1\)

\(\Leftrightarrow6=6+m-1\)

\(\Leftrightarrow m=1\)

b, Đths (1) cắt đths 2 tại 1 điểm trên trục tung nên 

\(\hept{\begin{cases}m-1\ne3m-11\\x=0\\-6x+m-1=\left(m-1\right)x+3m-11\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m-1\ne3m-11\\m-1=3m-11\end{cases}}\)ko tìm đc m

Bình luận (0)