từ điểm A bên ngoài đường tròn (O;R) vẽ tiếp tuyến AB với đường tròn ( B là tiếp điểm ) và cát tuyến ACD. Chứng minh \(AB^2=AC.AD=AO^2-R^2\)
Cho đường tròn \(\left(O\right)\) và điểm \(A\) bên ngoài đường tròn, từ \(A\) vẽ tiếp tuyến \(AB\) với đường tròn (\(B\) là tiếp điểm). Kẻ đường kính \(BC\) của đường tròn \(\left(O\right)\). \(AC\) cắt đường tròn \(\left(O\right)\) tại \(D\) (\(D\) khác \(C\)).
\(a\)) Chứng minh \(BD\) vuông góc \(AC\) và \(AB^2=AD\cdot AC\).
\(b\)) Từ \(C\) vẽ dây \(CE//OA,BE\) cắt \(OA\) tại \(H\). Chứng minh \(H\) là trung điểm \(BE\) và \(AE\) là tiếp tuyến của đường tròn \(\left(O\right)\).
\(c\)) Tia \(OA\) cắt đường tròn \(\left(O\right)\) tại \(F\). Chứng minh \(FA\cdot CH=HF\cdot CA\).
Từ một điểm a ở bên ngoài đường tròn tâm O,kẻ hai tiếp tuyến AB,AC với đường tròn này
Cho đường tròn (O;R). Từ một điểm A bên ngoài đường tròn kẻ tiếp tuyến AB với đường tròn (B là
tiếp điểm). Trên đường tròn lấy điểm C ( C khác B) sao cho AB=AC. Chứng minh AC là tiếp tuyến
của đường tròn (O;R).
Xét ΔOBA và ΔOCA có
OB=OC
AB=AC
OA chung
Do đó: ΔOBA=ΔOCA
=>\(\widehat{OBA}=\widehat{OCA}=90^0\)
=>AC là tiếp tuyến của (O;R)
cho đường tròn(o;r), từ điểm a ở bên ngoài đường tròn kẻ 2 tiếp tuyến ab, ac với đường tròn(o) (b,c là tiếp điểm) từ b kẻ đường thẳng song song ac cắt đường tròn(o) tại d(d khác b), đường thẳng ad cắt đường tròn (o) tại e( e khác d) a) chứng minh tứ giác aboc nội tiếp b) chứng minh ab²= ae×ad c) giả sử oa=2r. Tính góc bec và diện tích obac d) so sánh góc cea và góc bec
a) Xét tứ giác ABOC có
\(\widehat{ABO}\) và \(\widehat{ACO}\) là hai góc đối
\(\widehat{ABO}+\widehat{ACO}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Từ điểm C nằm bên ngoài đường tròn tâm O, kẻ tiếp tuyến CB với (O)( B là tiếp điểm). Lấy điểm A thuộc đường tròn (O) sao cho AC=AB, Vẽ đường kính BE.
Chứng minh OA//CE.
Theo hình vẽ thì đề không đúng. Bạn coi lại
cho đường tròn tâm o bán kính và m là một điểm nằm bên ngoài đường tròn . từ m kẻ hai tiếp tuyến từ ma,mb với đường tròn r (o) (a b là các tiếp điểm gọi e là giao điểm của ab và om
cho đường tròn tâm o bán kính và m là một điểm nằm bên ngoài đường tròn . từ m kẻ hai tiếp tuyến từ ma,mb với đường tròn r (o) (a b là các tiếp điểm gọi e là giao điểm của ab và om
Từ điểm A nằm bên ngoài đường tròn tâm O, kẻ tiếp tuyến AB với (O)( B là tiếp điểm). Lấy điểm
C thuộc đường tròn (O) sao cho AC=AB, Vẽ đường kính BE.
Chứng minh OA//CE.
Xét (O) có
AB là tiếp tuyến có B là tiếp điểm
AC là tiếp tuyến có C là tiếp điểm
Do đó: AB=AC
Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
hay OA\(\perp\)BC(3)
Xét (O) có
ΔBCE nội tiếp đường tròn
BE là đường kính
Do đó: ΔBCE vuông tại C
Suy ra: BC\(\perp\)CE(4)
từ (3) và (4) suy ra OA//CE
Từ điểm A ở bên ngoài đường tròn (O), kẻ 2 tiếp tuyến AB và AC đến đường tròn (O) (B, C là tiếp điểm). Kẻ cát tuyến ADE vs đường tròn (O) (D nằm giữa A và E).
a) Cm: 4 điểm A, B, O, C cùng thuộc một đường tròn
b) Cm OA ⊥ BC tại H và OD² = OH × OA. Từ đó suy ra tam giác OHD đồng dạng vs tam giác ODA.
Giải và vẽ hình giúp mình vớiii !! :(
a: Xét tứ giác ABOC có
\(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)
=>ABOC là tứ giác nội tiếp
=>A,B,C,O cùng thuộc một đường tròn
b: Xét (O) có
AB,AC là tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC tại H và H là trung điểm của BC
Xét ΔOBA vuông tại B có BH là đường cao
nên \(OH\cdot OA=OB^2\)
mà OB=OD
nên \(OD^2=OH\cdot OA\)
=>\(\dfrac{OD}{OH}=\dfrac{OA}{OD}\)
Xét ΔODA và ΔOHD có
\(\dfrac{OD}{OH}=\dfrac{OA}{OD}\)
\(\widehat{DOA}\) chung
Do đó: ΔODA đồng dạng với ΔOHD
Cho (O) và điểm A nằm bên ngoài đường tròn. Từ A kẻ các tiếp tuyến AB , AC với đường tròn (O) ( B , C là các tiểp điểm). Kẻ đường kính BD của đường tròn (O). 1) Chứng minh A , B , O , C cùng thuộc một đường tròn và OA //CD . 2) Kẻ CK vuông góc với BD tại K . Gọi I là giao điểm của AD và CK , E là giao của OA và BC . Chứng minh rằng góc ODE= góc OAD và KB. KC=4 KI2
giúp mk giải bài này vs lm ơn mik đag cần gấp
1: Xét tứ giác ABOC có \(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)
nên ABOC là tứ giác nội tiếp
=>A,B,O,C cùng thuộc một đường tròn
Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
từ (1),(2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC
Xét (O) có
ΔBCD nội tiếp
BD là đường kính
Do đó: ΔBCD vuông tại C
=>BC\(\perp\)CD
mà BC\(\perp\)OA
nên CD//OA
2: Ta có: OA là đường trung trực của BC
OA cắt BC tại E
Do đó: E là trung điểm của BC và OA\(\perp\)BC tại E
Xét ΔOBA vuông tại B có BE là đường cao
nên \(OE\cdot OA=OB^2\)
=>\(OE\cdot OA=OD^2\)
=>\(\dfrac{OE}{OD}=\dfrac{OD}{OA}\)
Xét ΔOED và ΔODA có
\(\dfrac{OE}{OD}=\dfrac{OD}{OA}\)
\(\widehat{EOD}\) chung
Do đó: ΔOED~ΔODA
=>\(\widehat{ODE}=\widehat{OAD}\)