Cho tam giác ABC vuông tại A . Đường cao AH . Tính diên tích tam giác ABC biết BH=4cm;HC=6cm
Cho tam giác ABC vuông tại A, đường cao AH. Biết BH= 4cm, CH= 9cm.
a) Tính độ dài đường cao AH và A B C ⏜ của tam giác ABC.
b) Vẽ đường trung tuyến AM M ∈ B C của tam giác ABC, tính AM và diện tích tam giác AHM
a , Δ A B C , A ⏜ = 90 0 , A H ⊥ B C g t ⇒ A H = B H . C H = 4.9 = 6 c m Δ A B H , H ⏜ = 90 0 g t ⇒ tan B = A H B H = 6 4 ⇒ B ⏜ ≈ 56 , 3 0 b , Δ A B C , A ⏜ = 90 0 , M B = M C g t ⇒ A M = 1 2 B C = 1 2 .13 = 6 , 5 c m S Δ A H M = 1 2 M H . A H = 1 2 .2 , 5.6 = 7 , 5 c m 2
Cho tam giác ABC vuông tại A, đường cao AH. Biết BH = 4cm, CH = 9cm
a) Tính độ dài đường cao AH và góc ABC của tam giác ABC
b) Vẽ đường trung tuyến AM, ( M thuộc BC ) của tam giác ABC. Tính AM và diện tích của tam giác AHM
1/ Cho tam giác ABC vuông tại C , đường cao CH ( H thuộc AB ). Biết AH = 4cm , BH = 9cm
a/ Chứng minh Tam giác ABC đồng dạng tam giác CBH
b/ Chứng minh BC bình phương = BH . BA
c/ Tính diện tích Tam giác ABC
a, Xét Δ ABC và Δ CBH
Ta có : \(\widehat{ACB}=\widehat{CHB}=90^o\)
\(\widehat{ABC}=\widehat{CBH}\) (góc chung)
=> Δ ABC ∾ Δ CBH (g.g)
b, Ta có : Δ ABC ∾ Δ CBH (cmt)
=> \(\dfrac{AB}{CB}=\dfrac{BC}{BH}\)
=> \(BC^2=AB.BH\)
c,
Ta có : AB = AH + HB
=> AB = 4 + 9
=> AB = 13 (cm)
Ta có : \(BC^2=AB.BH\left(cmt\right)\)
=> \(BC^2=13.9\)
=> \(BC^2=117\)
=> BC = 10,8 (cm)
Xét Δ ABC
Ta có : \(AB^2=AC^2+BC^2\)
=> \(13^2=AC^2+10,8^2\)
=> \(169=AC^2+116,64\)
=> \(169-116,64=AC^2\)
=> \(52,36=AC^2\)
=> AC = 7,2 (cm)
Xét Δ ABC vuông tại C
=> \(S_{\Delta ABC}=\dfrac{AC.BC}{2}\)
=> \(S_{\Delta ABC}=\dfrac{7,2.10,8}{2}\)
=> \(S_{\Delta ABC}=38,88\left(cm^2\right)\)
a, Xét Δ ABC và Δ CBH
Ta có :
(góc chung)
=> Δ ABC ∾ Δ CBH (g.g)
b, Ta có : Δ ABC ∾ Δ CBH (cmt)
=> ABCB=BCBHABCB=BCBH
=> BC2=AB.BH
c,
Ta có : AB = AH + HB
=> AB = 4 + 9
=> AB = 13 (cm)
Ta có : BC2=AB.BH(cmt)BC2=AB.BH(cmt)
=> BC2=13.9BC2=13.9
=> BC2=117BC2=117
=> BC = 10,8 (cm)
Xét Δ ABC
Ta có : AB2=AC2+BC2AB2=AC2+BC2
=> 132=AC2+10,82132=AC2+10,82
=> 169=AC2+116,64169=AC2+116,64
=> 169−116,64=
=>
câu 1:Cho tam giác ABC,vuông tại A,đường cáo AH(H thuộc BC).Biết AB=12CM,Ac=5cm.tính BH,CH
Câu 2:cho tam giác ABC vuông tại A,đường cáo AH(H thuộc BC).Biết AB=18cm,BH=6cm.tính đô dài các cạnh AB,AC
Câu 3:cho tam giac abc vuông tại a,biết ab-3cm,ac=4cm,
a.tinh bc
b:kẻ đường cao ah,tính bh
Câu 4:cho tam giác ABC Vuông tại A,biết ab=4cm,đường cao ah=2cm.Tính các góc và các cạnh còn lại của tam giác
Bạn chỉ cần áp dụng hệ thức lượng là đc rồi o0o
Cho tam giác ABC vuông tại A , đường cao AH . Chứng minh rằng 1/AH^2=1/AB^2+1/ac^2
a) Cho tam giác ABC vuông tại A, đường cao AH.
Biết AB = 8cm, BH = 4cm. Tính: BC, HC, AH.
b) Cho tam giác ABC vuông tại A, đường cao AH.
Biết AB = 6cm, BH = 3cm. Tính: BC, HC, AH.
a: \(AH=4\sqrt{3}\left(cm\right)\)
HC=12cm
BC=16cm
Cho tam giác vuông ABC vuông tại A, chân đường cao AH của tam giác ABC chia cạnh huyền BC thành hai đoạn thẳng BH = 4cm, HC = 9cm. Tính diện tích tam giác ABC?
A. S A B C = 39 c m 2
B. S A B C = 36 c m 2
C. S A B C = 78 c m 2
D. S A B C = 19 c m 2
Áp dụng hệ thức lượng trong tam giác ABC vuông tại A
Ta có:
Vậy S A B C = 1 2 A B . A C = 1 2 . 2 13 . 3 13 = 39 c m 2
Chọn đáp án A.
Cho tam giác ABC vuông tại A, đường cao AH. AH = 5cm, BH = 4cm. Tính chu vi tam giác ABC ?
Áp dụng định lý Pitago:
\(AB=\sqrt{AH^2+BH^2}=\sqrt{41}\)
Áp dụng hệ thức lượng:
\(AB^2=BH.BC\Rightarrow BC=\dfrac{AB^2}{BH}=\dfrac{41}{4}\)
Áp dụng Pitago:
\(AC=\sqrt{BC^2-AB^2}=\dfrac{5\sqrt{41}}{4}\)
Chu vi: \(AB+AC+BC=\dfrac{41+9\sqrt{41}}{4}\left(cm\right)\)
1/ Cho tam giác ABC vuông tại A có đường cao AH và đường trung tuyến AM
a/ Chứng minh AH2 = BH . CH
b/ Tính diện tích tam giác AMH , biết BH = 4cm , CH = 9cm
a,
Xét Δ AHB và Δ CAB, có :
\(\widehat{AHB}=\widehat{CAB}=90^o\)
\(\widehat{ABH}=\widehat{CBA}\) (góc chung)
=> Δ AHB ∾ Δ CAB (g.g)
=> \(\dfrac{AH}{CA}=\dfrac{HB}{AB}\)
=> \(\dfrac{AB}{CA}=\dfrac{HB}{AH}\)
Xét Δ AHB và Δ CHA, có :
\(\widehat{AHB}=\widehat{CHA}=90^o\)
\(\dfrac{AB}{CA}=\dfrac{HB}{AH}\) (cmt)
=> Δ AHB ∾ Δ CHA (g.g)
=> \(\dfrac{AH}{CH}=\dfrac{HB}{HA}\)
=> \(AH^2=HB.CH\)
b, Ta có : \(AH^2=BH.CH\) (cmt)
=> \(AH^2=4.9\)
=> \(AH^2=36\)
=> AH = 6
Xét Δ AHB, có :
\(AB^2=AH^2+BH^2\)
=> \(AB^2=6^2+4^2\)
=> \(AB^2=52\)
=> AB = 7,2 (cm)
Xét Δ AHC, có :
\(AC^2=AH^2+CH^2\)
=> \(AC^2=6^2+9^2\)
=> \(AC^2=117\)
=> AC = 10,8 (cm)
Xét Δ ABC, có :
\(BC^2=AB^2+AC^2\)
=> \(BC^2=7,2^2+10,8^2\)
=> \(BC^2=168,48\)
=> BC = 12,9 (cm)
Ta có : MC = \(\dfrac{1}{2}BC\) (M là trung điểm BC do có đường trung tuyến AM)
=> MC = 6,45 (cm)
Ta có : BC = BH + HM + MC
=> 12,9 = 4 + HM + 6,45
=> HM = 12,9 - 4 - 6,45
=> HM = 2,45 (cm)
Xét Δ AMH vuông tại H, có :
\(S_{\Delta AMH}=\dfrac{1}{2}AH.HM\)
=> \(S_{\Delta AMH}=\dfrac{1}{2}.6.2,45\)
=> \(S_{\Delta AMH}=7,35\left(cm\right)\)
1.Cho tam giác ABC vuông tại A. Gọi H là chân đường cao hạ từ A. Biết rằng AB = 7cm, AC = 9cm. Tính BH, CH, AH.
2. Cho tam giác ABC vuông tại A, đường cao AH. BH = 4cm, CH=9cm. Tính AH,AB,AC?
BÀI 2 : áp dụng hệ thức lượng trong tam giác, ta có: AH^2=BH*CH=>AH^2= 4*9=36=>AH=căn bậc hai của 36=6
\(AB^2=BH\cdot BC=4\cdot\left(4+9\right)=52=>AB=\sqrt{52}=2\sqrt{13}\)
\(AC^2=CH\cdot BC=9\cdot13=117=>AC=\sqrt{117}=3\sqrt{13}\)
Cho tam giác abc vuông tại a,đường cao ah đường trung tuyến am.tính diện tích của tam giác amh biết bh=4cm,ch=9cm
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=BH\cdot CH\)
\(\Leftrightarrow AH^2=4\cdot9=36\)
hay AH=6(cm)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên BC=4+9=13(cm)
Ta có: ΔABC vuông tại A(gt)
mà AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)
nên \(AM=\dfrac{1}{2}BC\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
hay \(AM=\dfrac{1}{2}\cdot13=6.5\left(cm\right)\)
Áp dụng định lí Pytago vào ΔAMH vuông tại H, ta được:
\(AM^2=AH^2+MH^2\)
\(\Leftrightarrow MH^2=AM^2-AH^2=6.5^2-6^2=6.25\)
hay MH=2,5(cm)
Diện tích tam giác AMH là:
\(S_{AMH}=\dfrac{AH\cdot HM}{2}=\dfrac{6\cdot2.5}{2}=\dfrac{15}{2}=7.5\left(cm^2\right)\)