Những câu hỏi liên quan
HN
Xem chi tiết
NT
27 tháng 2 2022 lúc 20:13

Theo định lí Pytago tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}=20cm\)

Vì AD là pg 

\(\dfrac{AB}{AC}=\dfrac{BD}{CD}\Rightarrow\dfrac{CD}{AC}=\dfrac{BD}{AB}\)

Theo tc dãy tỉ số bằng nhau 

\(\dfrac{CD}{AC}=\dfrac{BD}{AB}=\dfrac{BC}{AC+AC}=\dfrac{20}{28}=\dfrac{5}{7}\Rightarrow CD=\dfrac{80}{7}cm;BD=\dfrac{60}{7}cm\)

Bình luận (0)
NT
27 tháng 2 2022 lúc 20:14

Áp dụng định lí pitago, ta có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow BC=\sqrt{12^2+16^2}=\sqrt{400}=20cm\)

Ta có: AD là đường phân giác góc A nên:

\(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)

\(\Leftrightarrow\dfrac{12}{16}=\dfrac{BD}{CD}\Leftrightarrow\dfrac{3}{4}=\dfrac{BD}{CD}\)

\(\Leftrightarrow\dfrac{CD}{4}=\dfrac{BD}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{CD}{4}=\dfrac{BD}{3}=\dfrac{CD+BD}{4+3}=\dfrac{20}{7}\)

\(\Rightarrow CD=\dfrac{20}{7}.4=\dfrac{80}{7}\)

\(\Rightarrow BD=\dfrac{20}{7}.3=\dfrac{60}{7}\)

Bình luận (0)
TH
Xem chi tiết
TD
Xem chi tiết
NT
28 tháng 6 2023 lúc 19:52

MN//AC

AB vuông góc AC

=>MN vuông góc AB

Xét ΔANB có

NM,AH là đường cao

NM cắt AH tại M

=>M là trực tâm

=>BM vuông góc AN

Bình luận (1)
CP
Xem chi tiết
NT
10 tháng 3 2023 lúc 13:19

a: \(CB=\sqrt{12^2+16^2}=20\left(cm\right)\)

AH=12*16/20=9,6cm

Xet ΔABC có AD là phân giác

nên BD/AB=CD/AC

=>BD/3=CD/4=(BD+CD)/(3+4)=20/7

=>BD=60/7cm; CD=80/7cm

b: Sửa đề: AB,AC

Xét tứ giác AMHN có

góc AMH=góc ANH=góc MAN=90 độ

=>AMHN là hình chữ nhật

AM=AH^2/AB=9,6^2/12=7,68(cm)

AN=AH^2/AC=9,6^2/16=5,76(cm)

\(S_{AMHN}=7.68\cdot5.76=44.2368\left(cm^2\right)\)

Bình luận (0)
H24
Xem chi tiết
NT
30 tháng 7 2023 lúc 22:37

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: Đề sai rồi bạn

Bình luận (0)
PT
Xem chi tiết
SW
Xem chi tiết
H24
6 tháng 4 2023 lúc 20:29

Xét ΔABC vuông tại A, áp dụng định lí py-ta-go ta có:

\(BC^2=AB^2+AC^2\)

         \(=21^2+28^2\)

         \(=1225\)

->\(BC=\sqrt{1225}=35\left(cm\right)\)

Xét ΔABC có AD là tia phân giác ta có:

\(\dfrac{AB}{BD}=\dfrac{AC}{CD}=\dfrac{AB+AC}{BC}hay\dfrac{21}{BD}=\dfrac{28}{CD}=\dfrac{21+28}{35}=\dfrac{7}{5}\)

\(BD=\dfrac{21.5}{7}=15\left(cm\right)\)

\(CD=\dfrac{28.5}{7}=20\left(cm\right)\)

 

Bình luận (0)
NT
6 tháng 4 2023 lúc 20:24

loading...  

Bình luận (1)
NT
Xem chi tiết
NM
30 tháng 9 2021 lúc 8:19

\(BH=BC-CH=4\left(cm\right)\)

Áp dụng HTL tam giác:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=24\\AC^2=CH\cdot BC=12\\AH^2=BH\cdot CH=8\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AB=2\sqrt{6}\left(cm\right)\\AC=2\sqrt{3}\left(cm\right)\\AH=2\sqrt{2}\left(cm\right)\end{matrix}\right.\)

Bình luận (0)
NM
Xem chi tiết
NT
7 tháng 4 2021 lúc 22:29

a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{ABC}\) chung

Do đó: ΔABC\(\sim\)ΔHBA(g-g)

Bình luận (0)
NT
7 tháng 4 2021 lúc 22:30

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=9^2+12^2=225\)

hay BC=15(cm)

Vậy: BC=15cm

Bình luận (0)
H24
2 tháng 7 2021 lúc 11:03

c. Ta có: AD là phân giác góc A(gt)

⇒ AB/AC=DB/DC (tính chất phân giác trong tam giác)

⇔ 9/12=DB/(15-DB) ⇔ 12DB= 9(15-BD) =135-9BD

⇔ 21BD=135 ⇔ BD=6.4cm 

⇒ CD= BC-BD= 15-6.4 =8.6cm

Xét ΔHAB và ΔHAC

. AHB=AHC=90

. ACH=BAH (cùng phụ góc B)

⇒ ΔHAB~ΔHAC(g.g) ⇒ SΔHAB/SHAC= (AB/AC)2= (9/12)2 =9/16

 

 

 

Bình luận (0)
H24
Xem chi tiết
LH
4 tháng 8 2016 lúc 8:29
Câu 1: Áp dụng đ/lí pytago vào tam giác ABC vuông tại A CÓ:AB^2+AB^2=BC^2 Hay: 12^2+5^2=169=BC^2 => BC=13cm ÁP dụng hệ thức ta có: +) AB^2=BH.BC Hay: BH=AB^2:BC=144:13 =144/13(cm) Ta có CH=BC-BH=13-144/13=25/13(cm)
Bình luận (0)
LH
4 tháng 8 2016 lúc 8:31

Bạn chỉ cần áp dụng hệ thức lượng là đc rồi o0o

Bình luận (0)
NB
12 tháng 12 2016 lúc 15:30

Cho tam giác ABC vuông tại A , đường cao AH . Chứng minh rằng 1/AH^2=1/AB^2+1/ac^2

Bình luận (0)