Ôn tập: Tam giác đồng dạng

HN

Cho tam giác ABC vuông tại A có AB =12cm,AC=16cm .Kẻ đường cao AH (H thuộc BC)
a)vẽ đường phân giác AD,(D thuộc BC) tính BD, CD

NT
27 tháng 2 2022 lúc 20:13

Theo định lí Pytago tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}=20cm\)

Vì AD là pg 

\(\dfrac{AB}{AC}=\dfrac{BD}{CD}\Rightarrow\dfrac{CD}{AC}=\dfrac{BD}{AB}\)

Theo tc dãy tỉ số bằng nhau 

\(\dfrac{CD}{AC}=\dfrac{BD}{AB}=\dfrac{BC}{AC+AC}=\dfrac{20}{28}=\dfrac{5}{7}\Rightarrow CD=\dfrac{80}{7}cm;BD=\dfrac{60}{7}cm\)

Bình luận (0)
NT
27 tháng 2 2022 lúc 20:14

Áp dụng định lí pitago, ta có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow BC=\sqrt{12^2+16^2}=\sqrt{400}=20cm\)

Ta có: AD là đường phân giác góc A nên:

\(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)

\(\Leftrightarrow\dfrac{12}{16}=\dfrac{BD}{CD}\Leftrightarrow\dfrac{3}{4}=\dfrac{BD}{CD}\)

\(\Leftrightarrow\dfrac{CD}{4}=\dfrac{BD}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{CD}{4}=\dfrac{BD}{3}=\dfrac{CD+BD}{4+3}=\dfrac{20}{7}\)

\(\Rightarrow CD=\dfrac{20}{7}.4=\dfrac{80}{7}\)

\(\Rightarrow BD=\dfrac{20}{7}.3=\dfrac{60}{7}\)

Bình luận (0)

Các câu hỏi tương tự
RF
Xem chi tiết
H24
Xem chi tiết
TQ
Xem chi tiết
HN
Xem chi tiết
ND
Xem chi tiết
LM
Xem chi tiết
H24
Xem chi tiết
NM
Xem chi tiết
TL
Xem chi tiết