Những câu hỏi liên quan
KK
Xem chi tiết
NL
Xem chi tiết
NT
19 tháng 10 2023 lúc 9:09

loading...  

Bình luận (0)
H24
Xem chi tiết
NT
Xem chi tiết
NT
3 tháng 9 2021 lúc 23:43

Xét tứ giác ABCD có \(\widehat{BAD}+\widehat{BCD}=180^0\)

Do đó: ABCD là tứ giác nội tiếp

hay A,B,C,D cùng thuộc 1 đường tròn

Tâm là trung điểm của BD

Bán kính là \(\dfrac{BD}{2}\)

Bình luận (0)
H24
Xem chi tiết
LN
Xem chi tiết
AH
16 tháng 5 2021 lúc 20:49

Bài 1:

Xét tam giác $DHA$ và $DAB$ có:

$\widehat{D}$ chung

$\widehat{DHA}=\widehat{DAB}=90^0$

$\Rightarrow \triangle DHA\sim \triangle DAB$ (g.g)

$\Rightarrow \frac{DH}{DA}=\frac{DA}{DB}\Rightarrow DA^2=DH.DB(1)$

Tương tự: $\triangle BHA\sim \triangle BAD$ (g.g)

$\Rightarrow \frac{BH}{BA}=\frac{BA}{BD}\Rightarrow AB^2=BH.BD(2)$

Từ $(1);(2)\Rightarrow (\frac{AD}{AB})^2=\frac{DH}{BH}$

$\Rightarrow \frac{DH}{BH}=(\frac{6}{8})^2=\frac{9}{16}$

$\Rightarrow \frac{DH}{BD}=\frac{9}{25}$

\(\frac{S_{ADB}}{S_{HDA}}=\frac{AH.BD}{AH.HD}=\frac{BD}{HD}=\frac{25}{9}\)

Bình luận (0)
AH
16 tháng 5 2021 lúc 20:51

Hình vẽ 1:

Bình luận (0)
AH
16 tháng 5 2021 lúc 20:53

Bài 2:

Theo kết quả bài 1, ta có $\frac{DH}{DB}=\frac{9}{25}$

Mà $DB=\sqrt{AB^2+AD^2}=\sqrt{8^2+6^2}=10$ (cm) theo định lý Pitago

$\Rightarrow DH=\frac{9}{25}.DB=\frac{9}{25}.10=3,6$ (cm)

$BH=BD-DH=10-3,6=6,4$ (cm)

Bình luận (0)
NL
Xem chi tiết
DH
6 tháng 2 2022 lúc 20:27

k cho mình rồi mình gửi cho

Bình luận (0)
 Khách vãng lai đã xóa
KD
Xem chi tiết
NT
Xem chi tiết
H24
20 tháng 3 2021 lúc 22:20

Phương trình đường thẳng qua O và song song AB có dạng: x−y=0

 Tọa độ M là nghiệm của hệ: {x+3y−6=0x−y=0 ⇒M(32;32)

Phương trình đường thẳng BC qua M, nhận (1;1) là 1 vtpt có dạng:

1(x−32)+1(y−32)=0⇔x+y−3=0

Tọa độ B là nghiệm của hệ: {x−y+5=0x+y−3=0 ⇒B

M là trung điểm BC  tọa độ C

O là trung điểm AC  tọa độ A

O là trung điểm BD 

Bình luận (0)