Những câu hỏi liên quan
TP
Xem chi tiết
LP
23 tháng 3 2022 lúc 6:29

Hai tam giác AEF và ABF có chung đường cao hạ từ F nên ta có \(\frac{S_{AEF}}{S_{ABF}}=\frac{AE}{AB}=\frac{4}{6}=\frac{2}{3}\)(1)

Hai tam giác ABF và ABC có chung đường cao hạ từ B nên ta có \(\frac{S_{ABF}}{S_{ABC}}=\frac{AF}{AC}=\frac{4}{9}\)(2)

Từ (1) và (2) \(\Rightarrow\frac{S_{AEF}}{S_{ABF}}.\frac{S_{ABF}}{S_{ABC}}=\frac{2}{3}.\frac{4}{9}\)\(\Rightarrow\frac{S_{AEF}}{S_{ABC}}=\frac{8}{27}\)\(\Rightarrow S_{AEF}=\frac{8}{27}S_{ABC}=\frac{8}{27}.27=8\left(cm^2\right)\)

Vậy \(S_{AEF}=8cm^2\)

Bình luận (0)
 Khách vãng lai đã xóa
LP
23 tháng 3 2022 lúc 6:30

Bạn vào thống kê hỏi đáp của mình xem câu trả lời nhé. Nó chưa duyệt lên.

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
13 tháng 6 2018 lúc 3:53

Gọi M là trung điểm của BC

Ta tính được AG = 2 3 AM = 10cm

Gọi N là trung điểm của AB => MN//AC, MN ⊥ AB

D,I,G thẳng hàng

<=> A G A M = A D A N = 2 3 <=> A D 2 A N = 1 3 <=> A D A B = 1 3

Ta có AD = r nội tiếp =  A B + A C - B C 2 <=>  A B 3 = A B + A C - B C 2

<=> AB+3AC = 3BC =  A B 2 + A C 2

<=> 3AC = 4AB (đpcm)

Áp dụng kết quả trên ta có: AD =  A B + A C - B C 2 = 3cm

=> ID = DA = 3cm => IG = DG – ID = 1cm

Bình luận (0)
MT
Xem chi tiết
NT
25 tháng 3 2023 lúc 22:12

Sửa đề: AC=7,5

a: Sửa đề: ΔABC đồng dạng với ΔCBD
Xét ΔABC và ΔCBD có

BA/BC=CB/BD

góc B chung

=>ΔABC đồng dạng với ΔCBD

b: ΔABC đồng dạng với ΔCBD
=>AC/CD=AB/CB

=>7,5/CD=6/9=2/3

=>CD=11,25(cm)

 

Bình luận (0)
H24
Xem chi tiết
NT
23 tháng 7 2021 lúc 13:34

Bài 1: 

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=15^2-9^2=144\)

hay AC=12(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\\CH=\dfrac{12^2}{15}=\dfrac{144}{15}=9,6\left(cm\right)\end{matrix}\right.\)

Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:

\(AH^2+HB^2=AB^2\)

\(\Leftrightarrow AH^2=9^2-5.4^2=51,84\)

hay AH=7,2(cm)

Bình luận (0)
H24
Xem chi tiết
BB
Xem chi tiết
NT
12 tháng 3 2022 lúc 15:53

Theo định lí Pytago tam giác ABC vuông tại A

\(AC=\sqrt{BC^2-AB^2}=12cm\)

Vì BD là pg \(\dfrac{AB}{BC}=\dfrac{AD}{DC}\Rightarrow\dfrac{DC}{BC}=\dfrac{AD}{AB}\)

Theo tc dãy tỉ số bằng nhau ta có 

\(\dfrac{DC}{BC}=\dfrac{AD}{AB}=\dfrac{12}{24}=\dfrac{1}{2}\Rightarrow DC=\dfrac{15}{2}cm;DA=\dfrac{9}{2}cm\)

Bình luận (1)
H24
Xem chi tiết
ND
Xem chi tiết
NT
7 tháng 2 2023 lúc 20:58

AB=17*8/17=8cm

AC=17-8=9cm

DE=AB=8cm; BC=EF=12cm; AC=DF=9cm

Bình luận (0)
BN
Xem chi tiết
HN
11 tháng 3 2023 lúc 10:08

Ta có AB/AE = AC/AF
      <=> 6/4=9/6=3/2
 AEF và ABC chung góc A 
=> AEF và ABC đồng dạng "cạnh góc cạnh "
 b) BC =3x3/2=4,5cm


 

Bình luận (0)
BF
11 tháng 3 2023 lúc 11:16

A B C E F 3

`a)` Ta có: `(AE)/(AB) = 4/6 = 2/3`

`(AF)/(AC) = 6/9 = 2/3`

`=>  (AE)/(AB) = (AF)/(AC)`

Xét `ΔAEF` và `ΔABC` có: 

`hat{A}` chung

`(AE)/(AB) = (AF)/(AC)`

`=> ΔAEF ∼ ΔABC (c - g - c) ` (đpcm)

`b) ` Theo `a) ΔAEF ∼ ΔABC `

`=> (EF)/(BC) =  (AF)/(AC)`

`=> 3/(BC) = 2/3`

`=> BC = 3 : 2/3 = 9/2`

Vậy `BC = 9/2cm`

Bình luận (0)
NK
Xem chi tiết
KL
18 tháng 4 2020 lúc 16:13

Xem cách hack VIP OLM siêu dễ chỉ 10p xong tại đây: https://www.youtube.com/watch?v=zYcnHqUcGZE

Bình luận (0)
 Khách vãng lai đã xóa