Tìm giá trị của x+y, biết \(2x=8^{y+1};9y=3^{x-9}\left(x,y\in N\right)\)
a, cho x, y là 2 số thoả mãn (2x - y + 7)\(^{2022}\) + |x - 1|\(^{2023}\) ≤ 0. Tính giá trị của biểu thức: P = x\(^{2023}\) + (y - 10)\(^{2023}\)
b, Tìm số tự nhiên x, y biết 25 - y\(^2\) = 8(x = 2023)\(^2\)
c, Tìm giá trị nhỏ nhất của biểu thức: P = (|x - 3| + 2)\(^2\) + |y + 3| + 2019
d, Tìm cặp số nguyên x, y biết: (2 - x)(x + 1) = |y + 1|
a: \(\left(2x-y+7\right)^{2022}>=0\forall x,y\)
\(\left|x-1\right|^{2023}>=0\forall x\)
=>\(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}>=0\forall x,y\)
mà \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}< =0\forall x,y\)
nên \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}=0\)
=>\(\left\{{}\begin{matrix}2x-y+7=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2x+7=9\end{matrix}\right.\)
\(P=x^{2023}+\left(y-10\right)^{2023}\)
\(=1^{2023}+\left(9-10\right)^{2023}\)
=1-1
=0
c: \(\left|x-3\right|>=0\forall x\)
=>\(\left|x-3\right|+2>=2\forall x\)
=>\(\left(\left|x-3\right|+2\right)^2>=4\forall x\)
mà \(\left|y+3\right|>=0\forall y\)
nên \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|>=4\forall x,y\)
=>\(P=\left(\left|x-3\right|+2\right)^2+\left|y-3\right|+2019>=4+2019=2023\forall x,y\)
Dấu '=' xảy ra khi x-3=0 và y-3=0
=>x=3 và y=3
tìm x và y biết giá trị tuyệt đối của 2x+1+ với giá trị tuyệt đối của y-1 =4
Câu 1: Cho hàm số y = 2x\(^2\)
a) Hãy lập bảng tính các giá trị f(-5), f(-3), f(0), f(3), f(5)
b) Tìm x biết f(x) = 8, f(x) = 6 - 4\(\sqrt{2}\)
Câu 2: Cho hàm số y = f(x) = \(\dfrac{1}{3}x^2\)
Tìm các giá trị của x, biết rằng \(y=\dfrac{1}{27}\). Cũng câu hỏi tương tự với y = 5
Câu 1:
a)
\(y=f\left(x\right)=2x^2\) | -5 | -3 | 0 | 3 | 5 |
f(x) | 50 | 18 | 0 | 18 | 50 |
b) Ta có: f(x)=8
\(\Leftrightarrow2x^2=8\)
\(\Leftrightarrow x^2=4\)
hay \(x\in\left\{2;-2\right\}\)
Vậy: Để f(x)=8 thì \(x\in\left\{2;-2\right\}\)
Ta có: \(f\left(x\right)=6-4\sqrt{2}\)
\(\Leftrightarrow2x^2=6-4\sqrt{2}\)
\(\Leftrightarrow x^2=3-2\sqrt{2}\)
\(\Leftrightarrow x=\sqrt{3-2\sqrt{2}}\)
hay \(x=\sqrt{2}-1\)
Vậy: Để \(f\left(x\right)=6-4\sqrt{2}\) thì \(x=\sqrt{2}-1\)
Bài 1
a, Tính giá trị biểu thức: A= 1/2.(1+1/1.3)(1+1/2.4)(1+1/3.5)...(1+1/2015.2017)
b, Tính giá trị biểu thức:B= 2x^2-3x+5 với |x|=1/2
c, Tính giá trị biểu thức:C= 2x-2y+13x^3y^2(x-y)+15(y^2x-x^2y)+(2015/2016)^0 biết x-y=0
d, Tìm x,y biết (2x-1/6)^2 +|3y+12| bé hơn hoặc bằng 0
e, Tìm x,y,z biết: 3x-2y/4=2z-4x/3=4y-3z/2 và x+y+z=18
f, Tìm số nguyên x,y biết x-2xy+y-3=0
g, Cho đa thức f(x)= x^10-101x^9+101x^8-101x^7+...-101x+101. Tính f(100)
h, CMR từ 8 số nguyên dương tùy ý không lớn hơn 20, luôn chọn được ba số x,y,z là độ dài ba cạnh của một tam giác
1. ta có
\(3^{x+2}+4.3^{x+1}+3^{x-1}\)=66
\(3^x.3+3^x.3.4+3^x:3\)=66
3x.3+3x.12+3x.1/3=66
3x.(3+12+1/3)=66
3x.64/3=66
3x=66:64/3
3x=2187
3x=37
=> x=7
2.\(\frac{x}{3}=\frac{y}{4}=>\frac{x}{9}=\frac{y}{12}\) (cung nhân cả hai phân số với 1/3)
\(\frac{y}{6}=\frac{z}{8}=>\frac{y}{12}=\frac{z}{16}\) (cùng nhân cả hai phân số với 1/2)
từ đây suy ra
3+12+1/3=64/3 ???? vô lí
lấy máy tính thử tính coi
Tìm x , y biết : ( 2x - 1 ) . ( 2y 3 ) = - 77 , Giá trị tuyệt đối của x giá trị tuyệt đối của y = 3
giá trị của y-2x biết x-y=14 và x/y=8.
cho x và y là hai đại lượng tỉ lệ nghịch biết x1 và x2 là hai giá trị bất kì của x ; y1 và y2 là hai giá trị bất kì của y .biết 2x1-3y2 = 36 ;x2= -6 ;y1 = -8. tìm hệ số giữa x và y
Bài 1 : Tìm giá trị của x,y biết
a) x + y = 10 và x = y
b) 2x +3y = 180 và x=y
Bài 2 : Tìm x,y thuộc Z biết
a) 4.(x -8)<0
b) -3(x-7)>0
c) 198(x-7)>0
khoong biet