Sửa đề bài: \(2^x=8^{y+1}\)và \(9^y=3^{x-9}\)
Có: \(2^x=8^{y+1}\)
\(\Leftrightarrow2^x=\left(2^3\right)^{y+1}\)
\(\Leftrightarrow2^x=2^{3y+3}\)
\(\Leftrightarrow x=3y+3\) (1)
Lại có: \(9^y=3^{x-9}\)
\(\Leftrightarrow\left(3^2\right)^y=3^{x-9}\)
\(\Leftrightarrow3^{2y}=3^{x-9}\)
\(\Leftrightarrow2y=x-9\) (2)
Thay (1) vào (2), ta có:
=> 2y = 3y + 3 - 9
=> 2y = 3y - 6
=> 2y - 3y = -6
=> -1y = -6
=> y = 6 \(\left(y\in N\right)\)
Từ x = 3y + 3 (theo điều 1)
=> x = 3.6 + 3 = 21 \(\left(x\in N\right)\)
Vậy x + y = 21 + 6 = 27