cho \(2\le x\le3;4\le y,z\le6\)và \(x+y+z=12\)
Tìm GTLN \(xyz\)
Cho biểu thức \(Q=\dfrac{2x^2+2x+2}{x^2+1}\). chứng minh:\(1\le Q\le3\)
Vì \(x^2+1\ne0\) nên ta có thể viết lại:
\(\left(x^2+1\right)Q=2x^2+2x+2\Leftrightarrow Qx^2+Q=2x^2+2x+2\)\(\Leftrightarrow Qx^2-2x^2-2x+Q-2=0\Leftrightarrow\left(Q-2\right)x^2-2x+Q-2=0\) (*)
pt (*) có nghiệm khi \(\Delta'=\left(-1\right)^2-\left(Q-2\right)\left(Q-2\right)=1-\left(Q-2\right)^2\ge0\)\(\Leftrightarrow\left(Q-2\right)^2\le1\)\(\Leftrightarrow-1\le Q-2\le1\)\(\Leftrightarrow1\le Q\le3\) (đpcm)
a)cho 1 ≤a ≤ 2 . c/m a+\(\frac{2}{a}\le3\)
b) cho x,y,z thỏa mãn 1 ≤ x ≤ y ≤ z ≤ 2
c/m (x+y+z) \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\le\frac{81}{8}\)
Tìm GTLN của hàm số \(y=\left(x+2\right)\left(3-x\right)\), với \(-2\le x\le3\).
\(y=\left(x+2\right)\left(3-x\right)\)
\(=3x-x^2+6-2x\)
\(=-x^2+x+6\)
=>y'=-2x+1
Đặt y'=0
=>-2x+1=0
=>-2x=-1
=>\(x=\dfrac{1}{2}\)
\(f\left(\dfrac{1}{2}\right)=\left(\dfrac{1}{2}+2\right)\left(3-\dfrac{1}{2}\right)=\dfrac{5}{2}\cdot\dfrac{5}{2}=\dfrac{25}{4}\)
\(f\left(-2\right)=\left(-2+2\right)\left(3+2\right)=0\)
\(f\left(3\right)=\left(3+2\right)\left(3-3\right)=0\)
=>\(y_{max\left[-2;3\right]}=\dfrac{25}{4}\)
Miền nghiệm của hệ bất phương trình \(\left\{{}\begin{matrix}x+y\le10\\-3\le x\le3\\-3\le y\le3\end{matrix}\right.\) là:
A. Một nửa mặt phẳng
B. Miền tam giác
C. Miền tứ giác
D. Miền ngũ giác
\(\frac{1}{3}\le\frac{^{x^2}+x+1}{x^2-x+1}\le3\)CM
\(\frac{1}{3}< =\frac{x^2+x+1}{x^2-x+1}\Rightarrow x^2-x+1< =3x^2+3x+3\Rightarrow x^2-x+1-3x^2-3x-3< =0\)
\(\Rightarrow-2x^2-4x-2< =0\Rightarrow-2\left(x^2+2x+1\right)< =0\Rightarrow-2\left(x+1\right)^2< =0\)
vì \(\left(x+1\right)^2>=0;-2< 0\Rightarrow-2\left(x+1\right)^2< =0\)luôn đúng \(\Rightarrow\frac{1}{3}< =\frac{x^2+x+1}{x^2-x+1}\)luôn dúng (1)
cái kia cx tương tự như vậy nhé
CMR: \(1\le\frac{2\left(x^2+x+1\right)}{x^2+1}\le3.\)
Ta có:
\(\frac{2.\left(x^2+x+1\right)}{x^2+1}=\frac{2.\left(x^2+1\right)+2x}{x^2+1}=2+\frac{2x}{x^2+1}\)
Ta có:\(2+\frac{2x}{x^2+1}-1=1+\frac{2x}{x^2+1}\)
\(=\frac{x^2+2x+1}{x^2+1}=\frac{\left(x+1\right)^2}{x^2+1}\ge0\) \(\Rightarrow\frac{2.\left(x^2+x+1\right)}{x^2+1}\ge1\)
\(2+\frac{2x}{x^2+1}-3=\frac{2x}{x^2+1}-1=\frac{-x^2+2x-1}{x^2+1}\)
\(=\frac{-\left(x-1\right)^2}{x^2+1}\le0\) \(\Rightarrow\frac{2.\left(x^2+x+1\right)}{x^2+1}\le3\)
Vậy \(1\le\frac{2.\left(x^2+x+1\right)}{x^2+1}\le3\)
CMR: \(\frac{1}{3}\le\frac{x^2+x+1}{x^2-x+1}\le3\)
\(\cdot\left(x+1\right)^2\ge0\)
\(\Rightarrow x^2+2x+1>0\)
\(\Rightarrow2x^2+4x+2\ge0\)
\(\Rightarrow\left(3x^2+3x+3\right)-\left(x^2-x+1\right)\ge0\)
\(\Rightarrow3\left(x^2+x+1\right)\ge x^2-x+1\)
\(\Rightarrow\)\(\frac{x^2+x+1}{x^2-x+1}\ge\frac{1}{3}\) (1)
\(\cdot\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow2x^2-4x+2\ge0\)
\(\Rightarrow\left(3x^2-3x+3\right)-\left(x^2+x+1\right)\ge0\)
\(\Rightarrow3\left(x^2-x+1\right)\ge x^2+x+1\)
\(\Rightarrow\frac{x^2+x+1}{x^2-x+1}\le3\)(2)
Từ(1),(2) => đpcm
Chứng minh rằng:
\(\dfrac{1}{3}\le\dfrac{x^2+x+1}{x^2-x+1}\le3\)
Giải chi tiết giúp mik ạ
\(\dfrac{x^2+x+1}{x^2-x+1}-\dfrac{1}{3}=\dfrac{3x^2+3x+3-x^2+x-1}{3\left(x^2-x+1\right)}\)
\(=\dfrac{2x^2+4x+2}{3\left(x^2-x+1\right)}=\dfrac{2\left(x+1\right)^2}{3\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}}\ge0\)
Do đó: \(\dfrac{1}{3}\le\dfrac{x^2+x+1}{x^2-x+1}\)(1)
\(\dfrac{x^2+x+1}{x^2-x+1}-3=\dfrac{x^2+x+1-3x^2+3x-3}{x^2-x+1}\)
\(=\dfrac{-2x^2+4x-2}{x^2-x+1}=\dfrac{-2\left(x-1\right)^2}{x^2-x+1}\le0\)
Do đó: \(\dfrac{x^2+x+1}{x^2-x+1}\le3\)(2)
Từ (1)và (2) suy ra ĐPCM
Tìm GTLN của biểu thức:
a) A=\(x^2+y^2+z^2\) với \(-1\le x,y,z\le2\) và x+y+z\(\le3\)
Tìm Min của:
\(y=x^2\sqrt{9-x^2}khi-3\le x\le3\)