a) Tìm m, n để đường thẳng y = (2m -1)x + n (d) đi qua điểm A(2; -1) và B(1;4)
b) Tìm m để đường thẳng y = (m + 3)x + m (d) song song với đường thẳng y = 4x-1(d’)
cho đường thẳng y=(5-2m)x+m+2 (d)
a) Tìm m để đường thẳng (d) đi qua A(\(\dfrac{1}{2}\);2)
b) Tìm m để đường thẳng (d) tạo bởi trục Ox, góc nhọn góc tù.
c) Vẽ đường thẳng (d) với m=2. Tính góc tạo đường thẳng với trục Ox
d) Gọi M,N lần lượt là giao điểm của đường thẳng (d) với trục Ox.Tìm m để SOMN=\(\dfrac{1}{2}\)
: Cho đường thẳng: (d): y = (2m – 1)x + m – 2.
1) Tìm m để đường thẳng (d):
a. Đi qua điểm A(1; 6).
b. Song song với đường thẳng 2x + 3y – 5 = 0.
c. Vuông góc với đường thẳng x + 2y + 1 = 0.
2) Tìm điểm cố định mà (d) luôn đi qua với mọi m.
mn giảng giúp mình với, tại mình không hiểu ý ạ:( camon mn nhiều ạ
1.
\(a,\Leftrightarrow2m-1+m-2=6\Leftrightarrow3m=9\Leftrightarrow m=3\\ b,2x+3y-5=0\Leftrightarrow3y=-2x+5\Leftrightarrow y=-\dfrac{2}{3}x+\dfrac{5}{3}\)
Để \(\left(d\right)\text{//}y=-\dfrac{2}{3}x+\dfrac{5}{3}\Leftrightarrow\left\{{}\begin{matrix}2m-1=-\dfrac{2}{3}\\m-2\ne\dfrac{5}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{1}{6}\\m\ne\dfrac{11}{3}\end{matrix}\right.\Leftrightarrow m=\dfrac{1}{6}\)
\(c,x+2y+1=0\Leftrightarrow2y=-x-1\Leftrightarrow y=-\dfrac{1}{2}x-\dfrac{1}{2}\\ \left(d\right)\bot y=-\dfrac{1}{2}x-\dfrac{1}{2}\Leftrightarrow\left(-\dfrac{1}{2}\right)\left(2m-1\right)=-1\\ \Leftrightarrow\dfrac{1}{2}\left(2m-1\right)=1\Leftrightarrow m-\dfrac{1}{2}=1\Leftrightarrow m=\dfrac{3}{2}\)
2.
Gọi điểm cố định đó là \(A\left(x_0;y_0\right)\)
\(\Leftrightarrow y_0=\left(2m-1\right)x_0+m-2\\ \Leftrightarrow2mx_0+m-x_0-2-y_0=0\\ \Leftrightarrow m\left(2x_0+1\right)-\left(x_0+y_0+2\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x_0=-1\\x_0+y_0+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-\dfrac{1}{2}\\y_0=-\dfrac{3}{2}\end{matrix}\right.\)
cho đường thẳng d y = (m + 2) x + m Tìm m để d
a, song song với đường thẳng d1 : y = -2 x + 3
b ,vuông góc với đường thẳng d2 : y = 1 / 3 x + 1
C, đi qua điểm N( 1,3)
D, Tìm điểm cố định Mà D luôn đi qua với mọi m
\(a,d//d_1\Leftrightarrow\left\{{}\begin{matrix}m+2=-2\\m\ne3\end{matrix}\right.\Leftrightarrow m=-4\\ b,d\perp d_2\Leftrightarrow\dfrac{1}{3}\left(m+2\right)=-1\Leftrightarrow m+2=-3\Leftrightarrow m=-5\\ c,d.qua.N\left(1;3\right)\Leftrightarrow x=1;y=3\Leftrightarrow3=m+2+m\\ \Leftrightarrow2m=1\Leftrightarrow m=\dfrac{1}{2}\)
\(d,\) Gọi điểm đó là \(A\left(x_1;y_1\right)\)
\(\Leftrightarrow y_1=\left(m+2\right)x_1+m\\ \Leftrightarrow y_1-mx_1-2x_1-m=0\\ \Leftrightarrow-m\left(x_1+1\right)+y_1-2x_1=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_1+1=0\\y_1-2x_1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=-1\\y_1=-2\end{matrix}\right.\)
Vậy \(A\left(-1;-2\right)\) luôn đi qua D với mọi m
Cho hàm số y = (m+1)x − 2m+1 (d)
a) Xác định m để đường thẳng (d) đi qua gốc tọa độ.
b) Tìm m để đường thẳng (d) đi qua A(3; 4).Vẽ đồ thị với m vừa tìm được.
c) Tìm tọa độ giao điểm của đường thẳng vừa vẽ với đường thẳng (d’): y = −2x + 4
\(a,\Leftrightarrow A\left(0;0\right)\in\left(d\right)\Leftrightarrow-2m+1=0\Leftrightarrow m=\dfrac{1}{2}\\ b,\Leftrightarrow x=3;y=4\Leftrightarrow3\left(m+1\right)-2m+1=4\\ \Leftrightarrow3m+3-2m+1=4\\ \Leftrightarrow m=0\Leftrightarrow\left(d\right):y=x+1\\ c,\text{PT hoành độ giao điểm: }x+1=-2x+4\Leftrightarrow x=1\Leftrightarrow y=2\Leftrightarrow B\left(1;2\right)\\ \text{Vậy }B\left(1;2\right)\text{ là giao 2 đths}\)
a.tìm m để đồ thị hàm số y=(2m-1)x-m+2 vuông góc với đường thẳng y=-x
b.cho đường thẳng d có pt:ax+(2a-1)y+3=0
tìm a để đường thẳng d đi qua điểm M(1;-1). khi đó hãy tìm hệ số góc của đường thẳng d
c.cho đường thẳng d có pt:y=mx+2m-4.tìm m để đồ thị hàm số đi qua gốc tọa độ
Cho hàm số bậc nhất y=(2m-1)x-2m+5(m là tham số) có đồ thị là đường thẳng (d) và hàm số y=2x+1 có đồ thị là đường thẳng (d')
a. tìm giá trị của m để đường thẳng(d) đi qua điểm A(2;-3)
b. tìm giá trị của m để đường thẳng(d) song song với đường thẳng (d') .với giá trị m vừa tìm được ,vẽ đường thẳng(d) và tính góc α tạo bởi đường thẳng (d) và trục Ox ( làm tròn đến phút)
a: Thay x=2 và y=-3 vào (d), ta được:
\(2\left(2m-1\right)-2m+5=-3\)
=>\(4m-2-2m+5=-3\)
=>2m+3=-3
=>2m=-6
=>\(m=-\dfrac{6}{2}=-3\)
b: Để (d)//(d') thì \(\left\{{}\begin{matrix}2m-1=2\\-2m+5\ne1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2m=3\\-2m\ne-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{3}{2}\\m\ne2\end{matrix}\right.\)
=>m=3/2
Thay m=3/2 vào (d), ta được:
\(y=\left(2\cdot\dfrac{3}{2}-1\right)x-2\cdot\dfrac{3}{2}+5=2x+2\)
y=2x+2 nên a=2
Gọi \(\alpha\) là góc tạo bởi (d) với trục Ox
\(tan\alpha=2\)
=>\(\alpha\simeq63^026'\)
a) Tìm các giá trị của a và b để đường thẳng (d): y=ax+b đi qua hai điểm M(1;5) và N(2;8).
b) Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = 2x – a + 1 và parabol (P): y = \(\dfrac{1}{2}x^2\).
1.Tìm a để đường thẳng a đi qua điểm A (-1;3)
2.Tìm a để (d) cắt (P) tại hai điểm phân biệt có tọa độ (\(x_1;x_2\)) và (\(x_2;y_2\)) thỏa mãn điều kiện \(x_1x_2\left(y_1+y_2\right)+48=0\)
a: Theo đề, ta có:
\(\left\{{}\begin{matrix}a+b=5\\2a+b=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=2\end{matrix}\right.\)
b:
1: Thay x=-1 và y=3 vào (d), ta được:
\(2\cdot\left(-1\right)-a+1=3\)
=>-a-1=3
=>-a=4
hay a=-4
trong mặt phảng tọa độ oxy cho đường thẳng (d): y=(2m+3)x-(m^2+3m+2) và (p): y=x^2 a,tìm m để (d) đi qua điểm a(1;-5)
Để đường thẳng (d) đi qua điểm A(1, -5), ta cần giải hệ phương trình sau:
y = (2m + 3)x - (m^2 + 3m + 2) (1)
y = x^2 (2)
Thay x = 1 vào (1), ta có:
y = 2m + 3 - (m^2 + 3m + 2)
y = -m^2 - m + 1
Thay y từ (2) vào biểu thức trên, ta có:
x^2 = -m^2 - m + 1
x^2 + m^2 + m - 1 = 0
Để đường thẳng (d) đi qua điểm A(1, -5), phương trình (1) phải có nghiệm là y = -5 khi x = 1. Thay x = 1 và y = -5 vào (1), ta có:
-5 = 2m + 3 - (m^2 + 3m + 2)
m^2 + m - 10 = 0
(m + 2)(m - 5) = 0
Vậy, m = -2 hoặc m = 5.
Khi đó, phương trình của đường thẳng (d) sẽ là:
Khi m = -2: y = -x^2 - x - 1Khi m = 5: y = 13x - 24Thay x=1 và y=-5 vào (d), ta được:
2m+3-m^2-3m-2=-5
=>-m^2-m+6=0
=>m^2+m-6=0
=>(m+3)(m-2)=0
=>m=2 hoặc m=-3
Thay tọa độ điểm A(1; -5) vào (d) ta được:
2m + 3 - m² - 3m - 2 = -5
⇔ -m² - m + 1 = -5
⇔ m² + m - 6 = 0
∆ = 1 -4.1.(-6) = 25
m₁ = (-1 + 5) : 2 = 2
m₂ = (-1 - 5) : 2 = -3
Vậy m = -3; m = 2 thì (d) đi qua A(1; -5)
Cho đường thẳng (d):y=(m-2)x+n với m khác 2
Tìm m vsf n để đường thẳng (d) đi qua 2 điểm A (-1; 2); B(3; -4)