Những câu hỏi liên quan
PB
Xem chi tiết
CT
25 tháng 10 2019 lúc 15:06

Chọn B

Bình luận (0)
NC
Xem chi tiết
NL
21 tháng 3 2021 lúc 0:21

Do \(\left\{{}\begin{matrix}x\ge-1\Rightarrow x+1\ge0\\\sqrt{x^2+1}>0\end{matrix}\right.\) \(\Rightarrow y\ge0\)

\(y_{min}=0\) khi \(x=-1\)

Lại có: \(y^2=\dfrac{\left(x+1\right)^2}{x^2+1}=\dfrac{x^2+2x+1}{x^2+1}=\dfrac{2\left(x^2+1\right)-x^2+2x-1}{x^2+1}=2-\dfrac{\left(x-1\right)^2}{x^2+1}\le2\)

\(\Rightarrow y\le\sqrt{2}\)

\(y_{max}=\sqrt{2}\) khi \(x=1\)

Bình luận (0)
NT
Xem chi tiết
LH
Xem chi tiết
PB
Xem chi tiết
CT
24 tháng 7 2019 lúc 7:07

Bình luận (0)
DT
Xem chi tiết
AH
13 tháng 9 2021 lúc 9:33

Lời giải:
TXĐ: $[-1;1]$

$y'=\frac{1}{2\sqrt{x+1}}-\frac{1}{2\sqrt{1-x}}+\frac{x}{2}$

$y'=0\Leftrightarrow x=0$

$f(0)=2$;

$f(1)=f(-1)=\sqrt{2}+\frac{1}{4}$
Vậy $f_{\min}=2; f_{\max}=\frac{1}{4}+\sqrt{2}$

Bình luận (0)
DH
Xem chi tiết
NL
17 tháng 9 2021 lúc 23:34

Đặt \(\left\{{}\begin{matrix}\sqrt{5sin^2x+1}=a\\\sqrt{5cos^2x+1}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}1\le a;b\le\sqrt{6}\\a^2+b^2=5\left(sin^2x+cos^2x\right)+2=7\end{matrix}\right.\)

\(y=a+b\le\sqrt{2\left(a^2+b^2\right)}=\sqrt{14}\)

\(y_{max}=\sqrt{14}\) khi \(cos2x=0\Rightarrow x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)

Do \(1\le a\le\sqrt{6}\Rightarrow\left(a-1\right)\left(a-\sqrt{6}\right)\le0\)

\(\Rightarrow a\ge\dfrac{a^2+\sqrt[]{6}}{\sqrt{6}+1}\)

Tương tự ta có \(b\ge\dfrac{b^2+\sqrt{6}}{\sqrt{6}+1}\)

\(\Rightarrow y=a+b\ge\dfrac{a^2+b^2+2\sqrt{6}}{\sqrt{6}+1}=\dfrac{7+2\sqrt{6}}{\sqrt{6}+1}=\sqrt{6}+1\)

\(y_{min}=\sqrt{6}+1\) khi \(sin2x=0\Rightarrow x=\dfrac{k\pi}{2}\)

Bình luận (0)
MN
Xem chi tiết
ML
7 tháng 7 2015 lúc 18:20

\(4x^2-2\left|2x-1\right|-4x-5=\left(2x-1\right)^2-2\left|2x-1\right|+1-5\)

\(=\left(\left|2x-1\right|-1\right)^2-5\ge-5\)

Dấu "=" xảy ra khi \(\left|2x-1\right|=1\Leftrightarrow x=1\text{ hoặc }x=0\)

=> GTNN của y là -5

\(y=\left(\left|2x-1\right|-1\right)^2-5\)

\(-2\le x\le1\Rightarrow-5\le2x-1\le1\Rightarrow0\le\left|2x-1\right|\le5\)

\(\Rightarrow-1\le\left|2x-1\right|-1\le4\Rightarrow0\le\left(\left|2x-1\right|-1\right)^2\le16\)

\(\Rightarrow y\le16-5=11\)

Dấu "=" xảy ra khi x = -2

Vậy GTLN của y là 11.

Bình luận (0)
PB
Xem chi tiết
CT
30 tháng 11 2018 lúc 11:37

Chọn D

Bình luận (0)