Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

DH

Tìm GTLN, GTNN của hàm số:

\(y=\sqrt{5sin^2x+1}+\sqrt{5cos^2x+1}\)

 

NL
17 tháng 9 2021 lúc 23:34

Đặt \(\left\{{}\begin{matrix}\sqrt{5sin^2x+1}=a\\\sqrt{5cos^2x+1}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}1\le a;b\le\sqrt{6}\\a^2+b^2=5\left(sin^2x+cos^2x\right)+2=7\end{matrix}\right.\)

\(y=a+b\le\sqrt{2\left(a^2+b^2\right)}=\sqrt{14}\)

\(y_{max}=\sqrt{14}\) khi \(cos2x=0\Rightarrow x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)

Do \(1\le a\le\sqrt{6}\Rightarrow\left(a-1\right)\left(a-\sqrt{6}\right)\le0\)

\(\Rightarrow a\ge\dfrac{a^2+\sqrt[]{6}}{\sqrt{6}+1}\)

Tương tự ta có \(b\ge\dfrac{b^2+\sqrt{6}}{\sqrt{6}+1}\)

\(\Rightarrow y=a+b\ge\dfrac{a^2+b^2+2\sqrt{6}}{\sqrt{6}+1}=\dfrac{7+2\sqrt{6}}{\sqrt{6}+1}=\sqrt{6}+1\)

\(y_{min}=\sqrt{6}+1\) khi \(sin2x=0\Rightarrow x=\dfrac{k\pi}{2}\)

Bình luận (0)

Các câu hỏi tương tự
DH
Xem chi tiết
TP
Xem chi tiết
LH
Xem chi tiết
H24
Xem chi tiết
AT
Xem chi tiết
MH
Xem chi tiết
LH
Xem chi tiết
HA
Xem chi tiết
DH
Xem chi tiết