Viết pt ba cạnh của tg ABC biết C(4;3) đg p/g trong và đttuyến kẻ tử một đỉnh có pt lần lượt là: x+2y-5=0 và 4x+13y-10=0.
Cho ∆ABC cân tại A biết cạnh bên AB : 3x-y+5=0 và cạnh đáy x+y-1=0
a,viết pt cạnh AC biết đường thẳng AC đi qua điểm M (1,-3)
b,viết pt đường cao của ∆ABC
c,viết pt đường trung tuyến của ∆ABC
d, viết pt đường phân giác trong của ∆ABC
Giúp mình với ạ Trong mặt phẳng oxy cho tam giác ABC biết A=(2;-3), B=(-1;2),C=(1;-4) a) viết pt tham số của các cạnh tam giác ABC b)Viết pt tổng quát của đuờng cao AH c)Viết pt đường tròn có tâm O đi qua B
Cho ∆ABC cân tại A biết pt cạnh bên AB:3x-y+5=0 và cạnh đáy BC : x+2y-1=0
a, viết pt cạnh AC biết đt AC đi qua điểm M (1,-3)
b,viết pt đường cao của ∆ABC
c,viết pt đường trung tuyến
d, viết pt đường phân giác trong
33. Trong mặt phẳng toạ độ Oxy , cho tg ABC vs A( -1;2) , B(1;1) , C(2;-1) . Viết pt tổng quát đg cao AH của tg ABC.
\(\overrightarrow{BC}\left(1;-2\right)\)
Do AH vuông góc BC nên AH nhận \(\left(1;-2\right)\) là 1 vtpt
Phương trình AH qua A:
\(1\left(x+1\right)-2\left(y-2\right)=0\Leftrightarrow x-2y+5=0\)
Cho tam giác ABC có AB:BC:CA=5:6:7. Biết tg DEF đồng dạng với tg ABC và cạnh nhỏ nhất của tg DEF=1,5m. Tính cạnh của tg DEF.
Cho tam giac abc biet ab:bc:ac =5:6:7, tam giac def dong dang tam giac abc va canh nho nhat cua tam giac def la 1,5m . Tinh cac canh cua tam giac def
cho tg abc vuông tại a.đường p/g be.kẻ ek_|_ bc.gọi h à giao điểm của ba và ke c/m tg abe= tg kbe ah=ak tổng ba cạnh của tg aeh luôn lớn hơn hc
a: Xét ΔABE vuông tại A và ΔKBE vuông tại K có
BE chung
\(\widehat{ABE}=\widehat{KBE}\)
Do đó: ΔABE=ΔKBE
b: Xét ΔAEH vuông tại A và ΔKEC vuông tại K cso
EA=EK
\(\widehat{AEH}=\widehat{KEC}\)
Do đó: ΔAEH=ΔKEC
Suy ra: AH=KC
11 . Viết pt các cạnh tam giác ABC biết tọa độ của chân ba đường cao kẻ từ các đỉnh A , B , C là M ( - 1 ; - 2 ) , N ( 2 ; 2 ) , K ( - 1 ; 2 ) .
1.Cho tg ABC cân tại A kẻ AH_|_ BC tại H
C/m tg ABH= tg ACH
Vẽ trung tuyến BM. Gọi Glafgiao điểm của AH và BM. C/m G là trọng tâm của tg ABC
Từ H kẻ HD//AC c/m 3 điểm C,G,D thẳng hàng
2. cho tg abc vuông tại a.đường p/g be.kẻ ek_|_ bc.gọi h à giao điểm của ba và ke
c/m tg abe= tg kbe
ah=ak
tổng ba cạnh của tg aeh luôn lớn hơn hc
9. Cho đg thẳng (d) x -2y +1=0. Nếu đg thẳng (denta) đi qua M(1;-1) và song song vs (d) thì (denta) có pt?
10. Cho 3 điểm A(1;-2), B(5;-4) , C(-1;4). Đg cao AA' của tg ABC có pt?
18. Viết pt đg thẳng đi qua điểm M(2;-3) và cắt hai trục toạ độ tại hai điểm A và B sao cho tg OAB vuông cân.
9/ \(\Delta//\left(d\right)\Rightarrow\overrightarrow{n_d}=\left(1;-2\right)\)
\(\Rightarrow\left(d\right):\left(x-1\right)-2\left(y+1\right)=0\)
\(\left(d\right):x-2y-3=0\)
10/ \(\overrightarrow{BC}=\left(-6;8\right)\)
PT đường cao AA' nhận vecto BC làm vtpt
\(\Rightarrow\overrightarrow{n_{AA'}}=\overrightarrow{u_{BC}}=\left(-6;8\right)\)
\(AA':-6\left(x-1\right)+8\left(y+2\right)=0\)
\(AA'=-6x+8y+22=0\)
18/ Trong quá trình làm bài, mình rút ra kết luận sau: Nếu một đường thẳng chắn 2 trục toạ độ 2 đoạn có độ dài bằng nhau thì ptđt có hệ số góc là \(k=\pm1\)
Để mình chứng minh lại:
Đường thẳng có dạng : y= ax+b
\(\Rightarrow\) Nó cắt trục Oy tại điểm có toạ độ là \(\left(0;b\right)\)
Và cắt trục Ox tại điểm có toạ độ là \(\left(-\frac{b}{a};0\right)\)
Vì khoảng cách từ O đến từng điểm là như nhau
\(\Rightarrow\left|b\right|=\left|\frac{b}{a}\right|\Leftrightarrow\left[{}\begin{matrix}b=\frac{b}{a}\\b=-\frac{b}{a}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=1\\a=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\overrightarrow{u}=\left(1;1\right)\\\overrightarrow{u}=\left(1;-1\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left(d\right):x-2+y+3=0\\\left(d\right):x-2-y-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left(d\right):x+y+1=0\\\left(d\right):x-y-5=0\end{matrix}\right.\)