Những câu hỏi liên quan
NT
Xem chi tiết
QN
Xem chi tiết
MP
23 tháng 4 2023 lúc 19:10

a) Để tìm tọa độ tâm và bán kính của đường tròn ©, ta cần viết lại phương trình của nó dưới dạng chuẩn:
\begin{align*}
x^2 + y^2 - 2x + 6y - 2 &= 0 \
\Leftrightarrow (x-1)^2 + (y+3)^2 &= 14
\end{align*}
Vậy, tọa độ tâm của đường tròn © là $(1,-3)$ và bán kính của đường tròn © là $\sqrt{14}$.

b) Đường tròn có tâm $I(4,3)$ và đi qua $A(-4,1)$ có phương trình là:
$$(x-4)^2 + (y-3)^2 = (-4-4)^2 + (1-3)^2 = 20$$

c) Để tìm phương trình đường tròn (C') có tâm là $I(4,3)$ và cắt đường thẳng $d: 3x+4y-4=0$ tại hai điểm $M$ và $N$ sao cho $MN=6$, ta có thể làm như sau:

Tìm giao điểm $H$ của đường thẳng $d$ và đường vuông góc với $d$ đi qua $I$.Tìm hai điểm $M$ và $N$ trên đường thẳng $d$ sao cho $HM=HN=3$.Xây dựng đường tròn (C') có tâm là $I$ và bán kính bằng $IN=IM=\sqrt{3^2+4^2}=5$.

Để tìm giao điểm $H$, ta cần tìm phương trình của đường thẳng vuông góc với $d$ đi qua $I$. Đường thẳng đó có phương trình là:
$$4x - 3y - 7 = 0$$
Giao điểm $H$ của đường thẳng này và $d$ có tọa độ là $(\frac{52}{25}, \frac{9}{25})$.

Để tìm hai điểm $M$ và $N$, ta có thể sử dụng công thức khoảng cách giữa điểm và đường thẳng. Khoảng cách từ điểm $H$ đến đường thẳng $d$ là:
$$d(H,d) = \frac{|3\cdot \frac{52}{25} + 4\cdot \frac{9}{25} - 4|}{\sqrt{3^2+4^2}} = \frac{1}{5}$$
Vậy, hai điểm $M$ và $N$ cách $H$ một khoảng bằng $\frac{3}{5}$ và $\frac{4}{5}$ đơn vị theo hướng vuông góc với $d$. Ta có thể tính được tọa độ của $M$ và $N$ như sau:
$$M = \left(\frac{52}{25} - \frac{4}{5}\cdot 4, \frac{9}{25} + \frac{3}{5}\cdot 3\right) = \left(\frac{12}{25}, \frac{54}{25}\right)$$

$$N = \left(\frac{52}{25} + \frac{4}{5}\cdot 4, \frac{9}{25} + \frac{4}{5}\cdot 3\right) = \left(\frac{92}{25}, \frac{27}{5}\right)$$
Cuối cùng, phương trình đường tròn (C') có tâm là $I(4,3)$ và cắt đường thẳng $d$ tại hai điểm $M$ và $N$ sao cho $MN=6$ là:
$$(x-4)^2 + (y-3)^2 = 5^2$$

Bình luận (0)
QN
Xem chi tiết
GB
23 tháng 4 2023 lúc 22:28
Bình luận (0)
QP
23 tháng 4 2023 lúc 22:30

Tên quen ta :))

Bình luận (0)
NT
23 tháng 4 2023 lúc 23:14

a: (C): x^2+y^2-2x+6y-2=0

=>x^2-2x+1+y^2+6y+9-12=0

=>(x-1)^2+(y+3)^2=12

=>I(1;-3);\(R=2\sqrt{3}\)

b: I(1;-3); A(-4;1)

=>\(IA=\sqrt{\left(-4-1\right)^2+\left(1+3\right)^2}=\sqrt{34}\)

(C1): \(\left(x-1\right)^2+\left(y+3\right)^2=34\)

Bình luận (0)
QN
Xem chi tiết
NT
24 tháng 4 2023 lúc 8:39

loading...

Bình luận (0)
PB
Xem chi tiết
CT
17 tháng 8 2017 lúc 6:40

Vì (C) tiếp xúc với đường thẳng d: x + y + 2 = 0 nên (C) có bán kính

Đề kiểm tra 45 phút Hình học 10 Chương 3 có đáp án (Đề 3)

Vậy đường tròn (C) có dạng: (x - 2 ) 2  + (y + 2 ) 2  = 2

Bình luận (0)
NN
Xem chi tiết
TH
15 tháng 5 2023 lúc 21:34

a) Để tìm phương trình đường tròn © có tâm I(2,3) đi qua điểm A(5,7), ta sử dụng công thức khoảng cách từ điểm đến tâm đường tròn:

$I\hat{A} = \sqrt{(x_A - x_I)^2 + (y_A - y_I)^2}$

Với I là tâm đường tròn, A là điểm trên đường tròn.

Ta có: $x_I = 2$, $y_I = 3$, $x_A = 5$, $y_A = 7$

Thay vào công thức ta được:

$\sqrt{(5-2)^2 + (7-3)^2} = \sqrt{34}$

Vậy bán kính của đường tròn là $\sqrt{34}$.

Phương trình đường tròn © có tâm I(2,3) và bán kính $\sqrt{34}$ là:

$(x-2)^2 + (y-3)^2 = 34$

b) Để tìm phương trình tiếp tuyến của đường tròn © : $(x-1)^2 + ( y+5)^2 =4$, ta cần tìm đạo hàm của phương trình đường tròn tại điểm cần tìm tiếp tuyến.

Ta có phương trình đường tròn chính giữa:

$(x-1)^2 + (y+5)^2 = 2^2$

Đạo hàm hai vế theo x:

$2(x-1) + 2(y+5)y' = 0$

Suy ra:

$y' = -\frac{x-1}{y+5}$

Tại điểm M(x,y) trên đường tròn, ta có:

$(x-1)^2 + (y+5)^2 = 2^2$

Đạo hàm hai vế theo x:

$2(x-1) + 2(y+5)y' = 0$

Suy ra:

$y' = -\frac{x-1}{y+5}$

Vậy tại điểm M(x,y), phương trình tiếp tuyến của đường tròn là:

$y - y_M = y'(x-x_M)$

Thay $y'$ bằng $\frac{-(x-1)}{y+5}$ và $x_M$, $y_M$ bằng 1, -5 ta được:

$y + 5 = \frac{-(x-1)}{y+5}(x-1)$

Simplifying:

$x(y+5) + y(x-1) = 6$

Đường thẳng (d) có phương trình là $3x + 4y - 1 = 0$. Vì tiếp tuyến song song với đường thẳng (d) nên hệ số góc của tiếp tuyến

Bình luận (1)
PB
Xem chi tiết
CT
21 tháng 6 2018 lúc 3:28

a. Phương trình đường tròn : (x – 3)2 + (y + 2)2 = 9.

b. (I1; R1) là ảnh của (I; 3) qua phép tịnh tiến theo vec tơ v.

Giải bài 3 trang 34 sgk Hình học 11 | Để học tốt Toán 11

⇒ Phương trình đường tròn cần tìm: (x – 1)2 + ( y + 1)2 = 9.

c. (I2; R2) là ảnh của (I; 3) qua phép đối xứng trục Ox

⇒ R2 = 3 và I2 = ĐOx(I)

Tìm I2: I= ĐOx(I) ⇒ Giải bài 3 trang 34 sgk Hình học 11 | Để học tốt Toán 11 ⇒ I2(3; 2)

⇒ Phương trình đường tròn cần tìm: (x – 3)2 + (y – 2)2 = 9.

d. (I3; R3) là ảnh của (I; 3) qua phép đối xứng qua gốc O.

⇒ R3 = 3 và I3 = ĐO(I)

Tìm I3: I= ĐO(I) ⇒ Giải bài 3 trang 34 sgk Hình học 11 | Để học tốt Toán 11

 

⇒ Phương trình đường tròn cần tìm: (x + 3)2 +(y – 2)2 = 9.

Bình luận (0)
0T
Xem chi tiết
PB
Xem chi tiết
CT
13 tháng 4 2019 lúc 14:58

Ta có A(3;−1) là tâm của (C) nên tâm A' của (C') là ảnh của A qua phép vị tự đã cho. Từ đó suy ra A′ = (−3;8). Vì bán kính của (C) bằng 3, nên bán kính của (C') bằng |−2|.3 = 6

Vậy (C') có phương trình: x   +   3 2   +   y   −   8 2   = 36 .

Bình luận (0)
VL
Xem chi tiết