Hình chữ nhật ABCD có \(I\left(\dfrac{1}{2};0\right)\). AB có pt: \(x-2y+2=0\) và AB=2AD. Tìm tọa độ điểm A,B,C,D biết A có hoành độ âm
Cho hình chữ nhật ABCD có AB = \(\sqrt{2}\) , BC = \(\dfrac{a\sqrt{3}}{2}\). Gọi I là trung điểm AB , Qua C kẻ CM ⊥ DI cắt AB tại M . Tính \(\left|\overrightarrow{MC}+\overrightarrow{BC}\right|\)
Lời giải:
Trên tia đối tia $CB$ lấy $N$ sao cho $CB=CN$
\(|\overrightarrow{MC}+\overrightarrow{BC}|=|\overrightarrow{MC}+\overrightarrow{CN}|=|\overrightarrow{MN}|\)
Xét tam giác $BMC$ và $ADI$ có:
$\widehat{B}=\widehat{A}=90^0$
$\widehat{D}=\widehat{M}$ (cùng bù $\widehat{AMC})$
Do đó 2 tam giác này đồng dạng
$\Rightarrow \frac{BM}{BC}=\frac{AD}{AI}$
$\Rightarrow BM=BC.\frac{AD}{AI}=\frac{2BC^2}{AB}=\frac{3\sqrt{2}a}{4}$
$BN=2BC=a\sqrt{3}$
Do đó, áp dụng định lý Pitago:
$|\overrightarrow{MN}|=MN=\sqrt{BM^2+BN^2}=\frac{\sqrt{66}a}{4}$
1. Giải phương trình
\(\dfrac{\left(x-a\right)\left(x-c\right)}{\left(b-a\right)\left(b-c\right)}+\dfrac{\left(x-b\right)\left(x-c\right)}{\left(a-b\right)\left(a-c\right)}=1\)
2. Cho hình chữ nhật ABCD, E là điểm thuộc cạnh AD sao cho BC=BE. Phân giác của góc CBE cắt CD tại F, AB cắt EF tại I. Chứng minh rằng:
a) AB.EI=BC.AE
b) \(\dfrac{1}{AE^2}=\dfrac{1}{BE^2}+\dfrac{1}{EI^2}\)
c) \(CI\)⊥\(BD\)
3. Cho tam giác ABC cân tại A. Gọi M là trung điểm của BC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho góc DME bằng góc B. Chứng minh rằng:
a) \(BD.CE=\dfrac{1}{4}BC^2\)
b) DM là phân giác của góc BDE.
c) Chu vi tam giác ADE không đổi khi D, E chuyển động trên cạnh AB và AC
1. ĐKXĐ: \(a,b,c\) đôi một khác nhau.
\(\dfrac{\left(x-a\right)\left(x-c\right)}{\left(b-a\right)\left(b-c\right)}+\dfrac{\left(x-b\right)\left(x-c\right)}{\left(a-b\right)\left(a-c\right)}=1\)
⇔\(\dfrac{x-c}{a-b}\left(\dfrac{x-b}{a-c}-\dfrac{x-a}{b-c}\right)=1\)
⇔\(\dfrac{x-c}{a-b}.\dfrac{\left(x-b\right)\left(b-c\right)-\left(x-a\right)\left(a-c\right)}{\left(a-c\right)\left(b-c\right)}=1\)
⇔\(\dfrac{x-c}{a-b}.\dfrac{bx-cx-b^2+bc-\left(ax-cx-a^2+ac\right)}{\left(a-c\right)\left(b-c\right)}=1\)
⇔\(\dfrac{x-c}{a-b}.\dfrac{bx-b^2+bc-ax+a^2-ac}{\left(a-c\right)\left(b-c\right)}=1\)
⇔\(\dfrac{x-c}{a-b}.\dfrac{x\left(b-a\right)+c\left(b-a\right)-\left(b-a\right)\left(a+b\right)}{\left(a-c\right)\left(b-c\right)}=1\)
⇔\(\dfrac{x-c}{a-b}.\dfrac{\left(b-a\right)\left(x-a-b+c\right)}{\left(a-c\right)\left(b-c\right)}=1\)
⇔\(\dfrac{\left(x-c\right)\left(a-b\right)\left(x-a-b+c\right)}{\left(a-b\right)\left(c-a\right)\left(b-c\right)}-1=0\)
⇔\(\dfrac{\left(x-c\right)\left(a-b\right)\left(x-a-b+c\right)}{\left(a-b\right)\left(c-a\right)\left(b-c\right)}-\dfrac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)
⇔\(\left(x-c\right)\left(a-b\right)\left(x-a-b+c\right)-\left(a-b\right)\left(b-c\right)\left(c-a\right)=0\)
⇔\(\left(a-b\right)\left[\left(x-c\right)\left(x-a-b+c\right)-\left(b-c\right)\left(c-a\right)\right]=0\)
⇔\(a-b=0\) (loại do \(a\ne b\)) hay \(\left(x-c\right)\left(x-a-b+c\right)-\left(b-c\right)\left(c-a\right)=0\)
⇔\(x^2-ax-bx+cx-cx+ac+bc-c^2-\left(bc-ab-c^2+ac\right)=0\)
⇔\(x^2-ax-bx+cx-cx+ac+bc-c^2-bc+ab+c^2-ac=0\)
⇔\(x^2-ax-bx+ab=0\)
⇔\(x\left(x-a\right)-b\left(x-a\right)\)
⇔\(\left(x-a\right)\left(x-b\right)=0\)
⇔\(x=a\) hay \(x=b\)
-Vậy \(S=\left\{a;b\right\}\)
Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật ABCD có tâm \(I\left(\dfrac{1}{2};0\right)\) phương trình đường thẳng AB là : \(x-2y+2=0\) và AB = 2AD. Tìm tọa độ các đỉnh A, B, C, D biết đỉnh A có hoành độ âm ?
Bài 1: Cho hình chữ nhật ABCD, gọi H là hình chiếu của D trên AC
a) Cho AD = 6cm, DC = 8cm. Tính DH và \(\widehat{ACD}\)
b) Chứng minh rằng \(\left(\dfrac{BC}{AB}\right)^2=\dfrac{AH}{HC}\)
Bài 2: Giải phương trình \(x^2+\sqrt{2x+1}+\sqrt{x-3}=5x\)
Giúp mình với
Cho hình chữ nhật ABCD có AB=3AD , điểm E thuộc cạnh BC , AE cắt DC tại F
CMR: \(\dfrac{9}{AB^2}=\dfrac{9}{AE^2}+\dfrac{1}{AF^2}\)
Vì \(AB//CF\) ,áp dụng định lí Talet:
\(\dfrac{AE}{EF}=\dfrac{BE}{EC}\Rightarrow\dfrac{AE}{AF}=\dfrac{BE}{BC}\Rightarrow\dfrac{AE^2}{AF^2}=\dfrac{BE^2}{BC^2}\\ \Rightarrow\dfrac{AE^2}{AF^2}=\dfrac{AE^2-AB^2}{BC^2}=\dfrac{AE^2}{BC^2}-\left(\dfrac{AB}{BC}\right)^2\left(pytago\right)\\ \Rightarrow\dfrac{AE^2}{AF^2}=\dfrac{AE^2}{BC^2}-9=\dfrac{AE^2}{\dfrac{1}{9}AB^2}-9\\ \Rightarrow\dfrac{AE^2}{AF^2}+9=\dfrac{9AE^2}{AB^2}\\ \Rightarrow\dfrac{1}{AF^2}+\dfrac{9}{AE^2}=\dfrac{9}{AB^2}\)
Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD. Gọi H là hình chiếu của A lên BD; I là trung điểm của BH. Biết đỉnh A(2;1), phương trình đường chéo BD là: x + 5y - 19 = 0, điểm I\(\left(\dfrac{42}{13};\dfrac{41}{13}\right)\). Tìm phương trình tổng quát của đường thẳng AD.
Cho hình thang ABCD
a. Chỉ ra 1 hình chữ nhật (H) đồng phân với hình thang ABCD (có chứng minh)
b. Với hình chữ nhật(H) đã tìm được ở câu a và cho biết diện tích hình thang ABCD được tính như sau:
\(\frac{\left(a+c\right).b}{2}\). Hãy tìm diện tích hình chữ nhật(H)
Lời giải:
$S_{ABC}=AB\times BC:2=30\times 16:2=240$ (cm2)
$S_{ADC}=AD\times DC:2=16\times 30:2=240$ (cm2)
\(\frac{S_{AMC}}{S_{ABC}}=\frac{AM}{AB}=\frac{2}{3}\)
\(\Rightarrow S_{AMC}=\frac{2}{3}\times S_{ABC}=\frac{2}{3}\times 240=160\) (cm2)
\(S_{AMCD}=S_{ADC}+S_{AMC}=240+160=400\) (cm2)
hình ABCD là hình vuông và AENG là hình chữ nhật . Biết chu vi hình chữ nhật là 12cm và gấp 6 lần chiều rông của nó.Biết\(\dfrac{GB}{GA}\)=\(\dfrac{3}{2}\)