tìm x,y,z
x/2 = y/3 ; y/4 = z/5 và x + y + z = 875
Cho x, y, z là 3 số dương thỏa mãn x+y+z =9. Tìm giá tri nhỏ nhất của biểu thức
P=\(\frac{y^3}{x^2+xy+y^2}+\frac{z^3}{y^2+zx+z^2}+\frac{x^3}{z^2+zx+x^2}\)
\(P=\frac{y^3}{x^2+xy+y^2}+\frac{z^3}{y^2+zx+z^2}+\frac{x^3}{z^2+zx+x^2}\)
\(\Leftrightarrow P=\frac{y^4}{x^2y+xy^2+y^3}+\frac{z^4}{y^2z+z^2x+z^3}+\frac{x^4}{z^2x+zx^2+x^3}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^3+y^3+z^3+x^2y+x^2z+y^2x+y^2z+z^2x+z^2y}\)
\(\Leftrightarrow P\ge\frac{\left(x^2+y^2+z^2\right)^2}{\left(x+y+z\right)\left(x^2+y^2+z^2\right)}=\frac{x^2+y^2+z^2}{x+y+z}\ge3\)
Dấu "=" khi x=y=z=3
Tìm x y z sao cho x y = 2/3; yz = 3/5; zx=2/5
Ta có: \(xy\cdot yz\cdot zx=\dfrac{2}{3}\cdot\dfrac{3}{5}\cdot\dfrac{2}{5}=\dfrac{4}{25}\)
\(\Leftrightarrow\left(xyz\right)^2=\dfrac{4}{25}\)
\(\Leftrightarrow\left[{}\begin{matrix}xyz=\dfrac{2}{5}\\xyz=-\dfrac{2}{5}\end{matrix}\right.\)
Trường hợp 1: \(xyz=\dfrac{2}{5}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{3}\cdot z=\dfrac{2}{5}\\x\cdot\dfrac{3}{5}=\dfrac{2}{5}\\y\cdot\dfrac{2}{5}=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}z=\dfrac{3}{5}\\x=\dfrac{2}{3}\\y=1\end{matrix}\right.\)
Trường hợp 2: \(xyz=-\dfrac{2}{5}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{3}\cdot z=-\dfrac{2}{5}\\x\cdot\dfrac{3}{5}=-\dfrac{2}{5}\\y\cdot\dfrac{2}{5}=-\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}z=-\dfrac{3}{5}\\x=-\dfrac{2}{3}\\y=-1\end{matrix}\right.\)
Vậy: \(\left(x,y,z\right)\in\left\{\left(\dfrac{2}{3};1;\dfrac{3}{5}\right);\left(-\dfrac{2}{3};-1;-\dfrac{3}{5}\right)\right\}\)
x ; y ; z \(\ge0\) ; x + y + z = 4 . Tìm Max P = \(x^3+y^3+z^3+8\left(xy^2+yz^2+zx^2\right)\)
Không mất tính tổng quát, giả sử \(x=mid\left\{x;y;z\right\}\)
\(\Rightarrow\left(x-y\right)\left(x-z\right)\le0\)
\(\Rightarrow x^2+yz\le xy+xz\)
\(\Rightarrow zx^2+yz^2\le xyz+xz^2\)
\(\Rightarrow P\le x^3+y^3+z^3+8\left(xy^2+xz^2+xyz\right)\)
\(\Rightarrow P\le x^3+y^3+z^3+3yz\left(y+z\right)+8\left(xy^2+xz^2+2xyz\right)\)
\(\Rightarrow P\le x^3+\left(y+z\right)^3+8x\left(y+z\right)^2\)
\(\Rightarrow P\le x^3+\left(4-x\right)^3+8x\left(4-x\right)^2\)
\(\Rightarrow P\le8x^3-52x^2+80x+64\)
Tới đây, đơn giản nhất là khảo sát hàm \(f\left(x\right)=8x^3-52x^2+80x+64\) trên \(\left[0;4\right]\)
(Nếu ko khảo sát hàm, ta có thể tách như sau, tất nhiên là dựa trên điểm rơi có được từ việc khảo sát hàm):
\(\Rightarrow P\le\left(8x^3-52x^2+80x-36\right)+100\)
\(\Rightarrow P\le4\left(x-1\right)^2\left(2x-9\right)+100\)
Do \(0\le x\le4\Rightarrow2x-9< 0\Rightarrow P\le100\)
Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(1;3;0\right)\) và 1 vài bộ hoán vị của chúng
A) Tìm a,b,c
a= b/2=c/3 và 4a - 3b +2c= 36
B) tìm x,y,z
x/2=y/3,y/5=z/4 và x-y+z= -49
\(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}=\dfrac{4a-3b+2c}{4-6+6}=\dfrac{36}{4}=9\\ \Rightarrow\left\{{}\begin{matrix}a=9\\b=18\\c=27\end{matrix}\right.\\ \dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{4}\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{16}=\dfrac{x-y+z}{10-15+16}=\dfrac{-49}{11}\\ \Rightarrow\left\{{}\begin{matrix}x=-\dfrac{490}{11}\\y=-\dfrac{735}{11}\\z=-\dfrac{784}{11}\end{matrix}\right.\)
Cho các số thực dương x,y,z thỏa mãn x^3+y^3+z^3=24.Tìm GTNN cua biểu thức
P=\((xyz+2(x+y+z)^2)/(xy+yz+zx)-8/(xy+yz+zx+1)\)
Cho x,y,z dương thỏa mãn x+y+z=1. Tìm minP = \(\dfrac{3}{xy+yz+zx}+\dfrac{2}{x^2+y^2+z^2}\)
\(P=\dfrac{6}{2xy+2yz+2zx}+\dfrac{2}{x^2+y^2+z^2}\ge\dfrac{\left(\sqrt{6}+\sqrt{2}\right)^2}{\left(x+y+z\right)^2}=8+4\sqrt{3}\)
Tìm x,y,z
a) x2 + y2 + z2 = xy +yz + zx và x2011+y2011+z2011=32012
b) x+y+z=8. Tìm GTLN của B= xy+yz+zx
Tìm x,y,z:
xy=-2; yz=-3; zx=54
`\color{blue}\text {#DuyNam}`
Ta có:
`x*y=-2 , y*z=-3 , z*x=54`
`-> xy*yz*zx=-2*-3*54`
`-> x^2*y^2*z^2=324`
`-> (x*y*z)^2=324`
`-> (x*y*z)^2=(+-18)^2`
`-> x*y*z=+-18`
Với `x*y*z =18`
`-> x=18 \div -3=-6 , y=18 \div 54 = 1/3 , z=18 \div -2=-9`
Với `x*y*z=-18`
`-> x=-18 \div -3 = 6 , y= -18 \div 54 = -1/3 , z= -18 \div -2 = 9`
Tìm 3 số x,y,z biết : y2=zx ; z2=xy và x+y-z=1
Với \(y^2=zx;z^2=xy\)và ĐK : \(x+y-z=1\), ta có : \(y\cdot y=z\cdot x;z\cdot z=x\cdot y\)và ĐK : \(x+y-z-1=0\).
Với \(x+y-z-1=0\), coi \(1=a\), và chỉ khi \(x+y-z=a\)thì \(x+y-z-a=0\)( vì \(a=1\))
\(x+y-z-a=0\Rightarrow x+y-\left(z+a\right)\Rightarrow x+y=z+a\)(ĐK : \(y^2=zx;z^2=xy;x+y-z=a\))
Vậy thỏa mãn \(x=y=z=1\).
Tìm x,y,z biết x+y+z=3 và:
\(x^2+y^2+z^2+xy+yz+zx\)
câu hỏi của bạn thiếu dữ liệu phải không?