NV

Tìm x y z sao cho x y = 2/3; yz = 3/5; zx=2/5

NT
28 tháng 6 2021 lúc 12:50

Ta có: \(xy\cdot yz\cdot zx=\dfrac{2}{3}\cdot\dfrac{3}{5}\cdot\dfrac{2}{5}=\dfrac{4}{25}\)

\(\Leftrightarrow\left(xyz\right)^2=\dfrac{4}{25}\)

\(\Leftrightarrow\left[{}\begin{matrix}xyz=\dfrac{2}{5}\\xyz=-\dfrac{2}{5}\end{matrix}\right.\)

Trường hợp 1: \(xyz=\dfrac{2}{5}\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{3}\cdot z=\dfrac{2}{5}\\x\cdot\dfrac{3}{5}=\dfrac{2}{5}\\y\cdot\dfrac{2}{5}=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}z=\dfrac{3}{5}\\x=\dfrac{2}{3}\\y=1\end{matrix}\right.\)

Trường hợp 2: \(xyz=-\dfrac{2}{5}\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{3}\cdot z=-\dfrac{2}{5}\\x\cdot\dfrac{3}{5}=-\dfrac{2}{5}\\y\cdot\dfrac{2}{5}=-\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}z=-\dfrac{3}{5}\\x=-\dfrac{2}{3}\\y=-1\end{matrix}\right.\)

Vậy: \(\left(x,y,z\right)\in\left\{\left(\dfrac{2}{3};1;\dfrac{3}{5}\right);\left(-\dfrac{2}{3};-1;-\dfrac{3}{5}\right)\right\}\)

Bình luận (1)

Các câu hỏi tương tự
H24
Xem chi tiết
PA
Xem chi tiết
BS
Xem chi tiết
H24
Xem chi tiết
BN
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết
PN
Xem chi tiết
VH
Xem chi tiết