Những câu hỏi liên quan
PB
Xem chi tiết
CT
30 tháng 9 2019 lúc 9:13

x 2  - (m + 1)x + m – 2 = 0 (1)

a) Δ = m + 1 2  - 4(m – 2) = m 2  + 2m + 1 – 4m + 8

=  m 2  - 2m + 9 = m - 1 2  + 8 > 0 với mọi m.

Vậy với mọi m thuộc R, thì phương trình (1) luôn luôn có hai nghiệm phân biệt x 1  và  x 2

Bình luận (0)
2N
Xem chi tiết
BH
23 tháng 3 2022 lúc 19:41

a)thay m=1 vào pt ta có 

\(x^2+4x=0\)

<=> \(\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)

b) thay x=2 vào pt ta có: 13+m=0

<=>m=-13

thay m=-13 vào pt ta có

\(x^2+4x-12=0\)

<=>(x-2)(x+6)=0

<=>\(\left[{}\begin{matrix}x=2\\x=-6\end{matrix}\right.\)\(\)

vậy với m=-13 thì nghiệm còn lại là x=-6

c) để pt có 2 nghiệm pb thì \(\Delta>0\)

<=>16-4m-4>0

<=>3-m>0

<=>m<3

áp dụng định lí Vi-ét ta có\(\left\{{}\begin{matrix}x_1+x_2=-4\\x_1x_2=m+1\end{matrix}\right.\)

theo đề bài ta có \(x_1^2+x_2^2=10\)

<=>\(\left(x_1+x_2\right)^2-2x_1x_2=10\)

<=>16-2m-2=10

<=>2-m=0

<=>m=2(nhận)

vậy với m=2 thì pt có 2 nghiệm pb thỏa yêu cầu đề bài.

 

 

Bình luận (0)
NN
Xem chi tiết
NT
15 tháng 4 2023 lúc 13:11

a:Δ=(2m-2)^2-4(-m-3)

=4m^2-8m+4+4m+12

=4m^2-4m+16

=(2m-1)^2+15>=15>0

=>Phương trình luôn có hai nghiệm phân biệt

b: Để phương trình có hai nghiệm trái dấu thì -m-3<0

=>m+3>0

=>m>-3

c: Để phương trình có hai nghiệm âm thì:

2m-2<0 và -m-3>0

=>m<1 và m<-3

=>m<-3

d: x1^2+x2^2=(x1+x2)^2-2x1x2

=(2m-2)^2-2(-m-3)

=4m^2-8m+4+2m+6

=4m^2-6m+10

=4(m^2-3/2m+5/2)

=4(m^2-2*m*3/4+9/16+31/16)

=4(m-3/4)^2+31/4>0 với mọi m

Bình luận (0)
HT
Xem chi tiết
TA
23 tháng 7 2021 lúc 9:06

còn cái nịt

Bình luận (2)
BT
Xem chi tiết
LN
Xem chi tiết
NT
2 tháng 8 2021 lúc 23:53

Bài 1: 

a) Thay m=3 vào (1), ta được:

\(x^2-4x+3=0\)

a=1; b=-4; c=3

Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:

\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)

Bình luận (0)
NT
2 tháng 8 2021 lúc 23:54

Bài 2: 

a) Thay m=0 vào (2), ta được:

\(x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

hay x=1

Bình luận (0)
LT
Xem chi tiết
NV
2 tháng 3 2018 lúc 23:22

Sử dụng định lí Vi-ét:

\(\frac{2}{x_1}+\frac{2}{x_2}=3\Leftrightarrow\frac{2\left(x_1+x_2\right)}{x_1.x_2}=3\)(*)

Tính ∆' tìm điều kiện của m để phương trình có 2 nghiệm phân biệt.

Sau đó bạn viết định lí Vi-ét và áp dụng và (*) 

Kết hợp cả hai điều kiện lại là ra kết quả đúng.

Bình luận (0)
LT
4 tháng 3 2018 lúc 14:28

Cảm ơn ạ

Bình luận (0)
NH
Xem chi tiết
NT
23 tháng 4 2023 lúc 21:36

Để phương trình có nghiệm kép thì 6^2-4(m-2)=0

=>4(m-2)=36

=>m-2=9

=>m=11

=>x^2+6x+9=0

=>x=-3

Bình luận (0)
NQ
Xem chi tiết
H9
12 tháng 4 2023 lúc 14:03

a) \(x^2-mx+2m-4=0\) nhận \(x=3\) là nghiệm nên:

\(3^2-m.3+2m-4=0\)

\(\Leftrightarrow9-3m+2m-4=0\)

\(\Leftrightarrow m-5=0\)

\(\Leftrightarrow m=5\)

Vậy phương trình trở thành: \(x^2-5x+6=0\) nhận x=3 là nghiệm vậy nghiệm còn lại là:

\(\Delta=\left(-5\right)^2-4.1.6=1\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-\left(-5\right)+\sqrt{1}}{2.1}=3\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-\left(-5\right)-\sqrt{1}}{2.1}=2\end{matrix}\right.\)

Vậy nghiệm còn lại là \(x=2\)

Bình luận (0)
HH
Xem chi tiết
H24
28 tháng 5 2022 lúc 11:47

Ptr có:`\Delta=(-m)^2-4(m-3)=m^2-4m+12=(m-2)^2+8 > 0 AA m`

`=>` Ptr luôn có nghiệm `AA m`

`=>` Áp dụng Viét có:`{(x_1+x_2=[-b]/a=m),(x_1.x_2=c/a=m-3):}`

Ta có:`A=2(x_1 ^2+x_2 ^2)-x_1.x_2`

`<=>A=2[(x_1+x_2)^2-2x_1.x_2]-x_1.x_2`

`<=>A=2[m^2-2(m-3)]-(m-3)`

`<=>A=2(m^2-2m+6)-m+3`

`<=>A=2m^2-4m+12-m+3=2m^2-5m+15`

`<=>A=2(m^2-5/2+15/2)`

`<=>A=2[(m-5/4)^2+95/16]`

`<=>A=2(m-5/4)^2+95/8`

Vì `2(m-5/4)^2 >= 0 AA m<=>2(m-5/4)^2+95/8 >= 95/8 AA m`

     Hay `A >= 95/8 AA m`

Dấu "`=`" xảy ra`<=>(m-5/4)^2=0<=>m=5/4`

Vậy `GTN N` của `A` là `95/8` khi `m=5/4`

Bình luận (0)
H24
28 tháng 5 2022 lúc 11:47

Đề liệu cs sai 0 bạn nhỉ, ở cái biểu thức `A` í chứ nếu đề vậy thì 0 tìm đc GTNN đâu (Theo mik thì là vậy)

Bình luận (1)