Những câu hỏi liên quan
DT
Xem chi tiết
DT
18 tháng 7 2021 lúc 16:36

GIÚP TỚ VỚI 

 

Bình luận (1)
NT
18 tháng 7 2021 lúc 22:39

a) Ta có: \(\left|x-3\right|+\left|y-2x\right|=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\y-2x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2x=2\cdot3=6\end{matrix}\right.\)

Bình luận (1)
TN
17 tháng 11 2021 lúc 19:40

bạn tin lúc trước tớ nói không tớ sai ở chổ 1x0 đóooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Bình luận (0)
 Khách vãng lai đã xóa
BG
Xem chi tiết
NT
18 tháng 7 2021 lúc 22:39

a) Ta có: \(\left|x-3\right|+\left|y-2x\right|=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\y-2x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2x=2\cdot3=6\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết
PG
19 tháng 1 2022 lúc 15:20

Đặt \(\dfrac{x-y}{z}=m,\dfrac{y-z}{x}=n,\dfrac{z-x}{y}=p\), ta có:

\(\left(m+n+p\right)\left(\dfrac{1}{m}+\dfrac{1}{n}+\dfrac{1}{p}\right)=3+\dfrac{n+p}{m}+\dfrac{p+m}{n}+\dfrac{m+n}{p}\)

Tính \(\dfrac{n+p}{m}\) theo x, y, z ta được:

\(\dfrac{n+p}{m}=\dfrac{z}{x-y}.\dfrac{y^2-yz+xz-x^2}{xy}=\dfrac{z}{xy}\left(-x-y+x\right)\)

           \(=\dfrac{z}{xy}\left(-x-y-z+2z\right)=\dfrac{2x^2}{xy}\) vì \(\left(x+y+z\right)=0\)

Tương tự:    \(\dfrac{m+p}{n}=\dfrac{2x^2}{yz}.\dfrac{m+n}{p}=\dfrac{2y^2}{xz}\)

Vậy \(\left(m+n+p\right)\left(\dfrac{1}{m}+\dfrac{1}{n}+\dfrac{1}{p}\right)=3+\dfrac{2\left(x^3+y^3+z^3\right)}{xyz}=3+\dfrac{2.3xyz}{xyz}=3+6=9\)

 

Bình luận (0)
QN
Xem chi tiết
H9
1 tháng 8 2023 lúc 12:47

a) \(A=\dfrac{x\sqrt{y}+y\sqrt{x}}{x+2\sqrt{xy}+y}\)

\(A=\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)^2}\)

\(A=\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)

b) \(B=\dfrac{x\sqrt{y}-y\sqrt{x}}{x-2\sqrt{xy}+y}\)

\(B=\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)^2}\)

\(B=\dfrac{\sqrt{xy}}{\sqrt{x}-\sqrt{y}}\)

c) \(C=\dfrac{3\sqrt{a}-2a-1}{4a-4\sqrt{a}+1}\)

\(C=\dfrac{-\left(2a-3\sqrt{a}+1\right)}{\left(2\sqrt{a}\right)^2-2\sqrt{a}\cdot2\cdot1+1^2}\)

\(C=\dfrac{-\left(\sqrt{a}-1\right)\left(2\sqrt{a}-1\right)}{\left(2\sqrt{a}-1\right)^2}\)

\(C=\dfrac{-\sqrt{a}+1}{2\sqrt{a}-1}\)

d) \(D=\dfrac{a+4\sqrt{a}+4}{\sqrt{a}+2}+\dfrac{4-a}{\sqrt{a}-2}\)

\(D=\dfrac{\left(\sqrt{a}+2\right)^2}{\sqrt{a}+2}+\dfrac{\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)}{\sqrt{a}-2}\)

\(D=\sqrt{a}+2-\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{\sqrt{a}-2}\)

\(D=\left(\sqrt{a}+2\right)-\left(\sqrt{a}+2\right)\)

\(D=0\)

Bình luận (0)
PB
Xem chi tiết
CT
19 tháng 10 2019 lúc 8:27

a) Đúng

b) Đúng

c) Sai

Bình luận (0)
H24
Xem chi tiết
NM
23 tháng 10 2021 lúc 7:25

Đặt \(P=\left(\dfrac{x-y}{z}+\dfrac{y-z}{x}+\dfrac{z-x}{y}\right)\left(\dfrac{z}{x-y}+\dfrac{x}{y-z}+\dfrac{y}{z-x}\right)=9\)

Đặt \(\left\{{}\begin{matrix}\dfrac{x-y}{z}=a\\\dfrac{y-z}{x}=b\\\dfrac{x-z}{y}=c\end{matrix}\right.\)

\(\Leftrightarrow P=\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\\ =1+\dfrac{a}{b}+\dfrac{a}{c}+\dfrac{b}{a}+1+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{c}{b}+1\\ =3+\dfrac{a+c}{b}+\dfrac{a+b}{c}+\dfrac{b+c}{a}\)

Ta có \(\dfrac{a+c}{b}=\dfrac{\dfrac{x-y}{z}+\dfrac{z-x}{y}}{\dfrac{y-z}{x}}=\dfrac{xy-y^2+z^2-xz}{yz}\cdot\dfrac{x}{y-z}\)

\(=\dfrac{\left(z-y\right)\left(y+z-x\right)x}{yz\left(y-z\right)}=\dfrac{x\left(x-y-z\right)}{yz}\)

Mà \(x+y+z=0\Leftrightarrow x=-y-z\)

\(\Leftrightarrow\dfrac{a+c}{b}=\dfrac{x\left(x+x\right)}{yz}=\dfrac{2x^2}{yz}\)

Cmtt ta được \(\dfrac{a+b}{c}=\dfrac{2y^2}{xz};\dfrac{b+c}{a}=\dfrac{2z^2}{xy}\)

Cộng vế theo vế

\(\Leftrightarrow P=\dfrac{2x^2}{yz}+\dfrac{2y^2}{xz}+\dfrac{2z^2}{xy}+3=\dfrac{2x^3+2y^3+2z^3}{xyz}+3\\ \Leftrightarrow P=\dfrac{2\left(x^3+y^3+z^3\right)}{xyz}+3\)

Lại có \(x+y+z=0\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=0\)

\(\Leftrightarrow x^3+y^3+z^3-3xyz=0\\ \Leftrightarrow x^3+y^3+z^3=3xyz\)

Thế vào \(P\)

\(\Leftrightarrow P=\dfrac{2\cdot3xyz}{xyz}+3=6+3=9\)

Bình luận (0)
H24
Xem chi tiết
TL
12 tháng 5 2021 lúc 22:00

a) Giả sử `(x+1)^2 >= 4x` là đúng.

Có: `(x+1)^2 >=4x <=> x^2+2x+1>=4x`

`<=>x^2+1>=2x`

`<=>x^2-2x+1>=0`

`<=> (x-1)^2>=0 forall x`.

Vậy điều giả sử là đúng.

b) `x^2+y^2+2 >=2(x+y)`

`<=> (x^2-2x+1)+(y^2-2y+1) >=0`

`<=>(x-1)^2+(y-1)^2>=0 forall x,y`

c) `(1/x+1/y)(x+y)>=4`

`<=> (x+y)/(xy) (x+y) >=4`

`<=> (x+y)^2 >= 4xy`

`<=> x^2+2xy+y^2>=4xy`

`<=> (x-y)^2>=0 forall x,y > 0`

d) `x/y+y/x>=2`

`<=> (x^2+y^2)/(xy) >=2`

`<=> x^2+y^2 >=2xy`

`<=> (x-y)^2>=0 \forall x,y>0`.

Bình luận (1)
DT
12 tháng 5 2021 lúc 22:24

a) Xét hiệu \(\left(x+1\right)^2-4x\) = \(x^2-2x+1=\left(x-1\right)^2\ge0\)

=> \(\left(x+1\right)^2-\text{4x}\) \(\ge\) 0

=> \(\left(x+1\right)^2\ge\text{4x}\) (điều phải chứng minh)

b) xét hiệu \(x^2+y^2+2-2\left(x+y\right)\) = \(\left(x-1\right)^2+\left(y-1\right)^2\ge0\)

=> \(x^2+y^2+2-2\left(x+y\right)\ge0\)

=> \(x^2+y^2+2\ge2\left(x+y\right)\) (điều phải chứng minh)

c) Xét hiệu \(\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(x+y\right)-4\) = \((\dfrac{x+y}{xy})\left(x+y\right)-4=\dfrac{\left(x+y\right)^2-4xy}{xy}=\dfrac{\left(x-y\right)^2}{xy}\) \(\ge0\)​​​(vì x>0,y>0)

=>\(\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(x+y\right)\ge4\) (điều phải chứng minh)

d) Áp dụng bất đẳng thức Cau-Chy cho các số x>0;y>0 ta có

\(\dfrac{x}{y}+\dfrac{y}{x}\ge2.\left(\dfrac{xy}{yx}\right)=2\)

=> \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\) (điều phải chứng minh)

Mình làm hơi tắt mong bạn thông cảm nhé

Chúc bạn học tốt

 

Bình luận (1)
PB
Xem chi tiết
CT
3 tháng 1 2017 lúc 14:33

a) Đúng

b) Đúng

c) Sai

Bình luận (0)
TO
Xem chi tiết
BB
18 tháng 10 2017 lúc 13:30

Dễ ợt ak

Bình luận (0)
TO
Xem chi tiết
MS
18 tháng 10 2017 lúc 17:50

Hướng dẫn thôi nhé:

Lời giải:

a)\(xy+x+y+1=0\)

\(\Rightarrow x\left(y+1\right)+1\left(y+1\right)=0\)

\(\Rightarrow\left(x+1\right)\left(y+1\right)=0\)

b)\(xy-x-y=0\)

\(\Rightarrow xy-x-y+1=1\)

\(\Rightarrow x\left(y-1\right)-1\left(y-1\right)=1\)

\(\Rightarrow\left(x-1\right)\left(y-1\right)=1\)

c)\(xy-x-y-1=0\)

\(\Rightarrow xy-x-y+1=2\)

\(\Rightarrow x\left(y-1\right)-1\left(y-1\right)=2\)

\(\Rightarrow\left(x-1\right)\left(y-1\right)=2\)

d) \(xy-x-y+1=0\)

\(\Rightarrow x\left(y-1\right)-1\left(y-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(y-1\right)=0\)

e)\(xy+2x+y+11=0\)

\(\Rightarrow xy+2x+y+2=-9\)

\(\Rightarrow x\left(y+2\right)+1\left(y+2\right)=-9\)

\(\Rightarrow\left(x+1\right)\left(y+2\right)=-9\)

Bình luận (0)