Những câu hỏi liên quan
H24
Xem chi tiết
GL
16 tháng 5 2018 lúc 21:28

 thiếu đề sao làm được

Bình luận (0)
H24
20 tháng 7 2018 lúc 19:16

mk chịu 

Bình luận (0)
NN
Xem chi tiết
NT
2 tháng 7 2023 lúc 7:53

1: P(x)=M(x)+N(x)

=-2x^3+x^2+4x-3+2x^3+x^2-4x-5

=2x^2-8

2: P(x)=0

=>x^2-4=0

=>x=2 hoặc x=-2

3: Q(x)=M(x)-N(x)

=-2x^3+x^2+4x-3-2x^3-x^2+4x+5

=-4x^3+8x+2

Bình luận (0)
NK
Xem chi tiết
NN
Xem chi tiết
KR
14 tháng 8 2023 lúc 20:22

`@` `\text {Ans}`

`\downarrow`

`a)`

`A(x) = \(3(x^2+2-4x)-2x(x-2)+17\)

`= 3x^2 + 6 - 12x - 2x^2 + 4x + 17`

`= x^2 - 8x + 23`

Hệ số cao nhất: `1`

Hệ số tự do: `23`

`B(x) = \(3x^2-7x+3-3(x^2-2x+4)\)

`=3x^2 - 7x + 3 - 3x^2 + 6x - 12`

`= -x - 9`

Hệ số cao nhất: `-1`

Hệ số tự do: `-9`

`b)`

`N(x) - B(x) = A(x)`

`=> N(x) = A(x) + B(x)`

`=> N(x) = (x^2 - 8x + 23)+(-x-9)`

`= x^2 - 8x + 23 - x - 9`

`= x^2 - 9x + 14`

 

`A(x) - M(x) = B(x)`

`=> M(x) = A(x) - B(x)`

`=> M(x) = (x^2 - 8x + 23) - (-x - 9)`

`= x^2 - 8x + 23 + x+9`

`= x^2 - 7x +32`

Bình luận (10)
DT
14 tháng 8 2023 lúc 20:22

a)A(x) = 3(x^2 + 2 - 4x) - 2x(x - 2) + 17

           = 3x^2 + 6 - 12x - 2x^2 + 4x + 17

           = x^2 - 2x + 23

b)B(x) = 3x^2 - 7x + 3 - 3(x^2 - 2x + 4)

           = 3x^2 - 7x + 3 - 3x^2 + 6x - 12

           = -x + -9

A(x) = x^2 - 2x + 23

B(x) = -x - 9

Hệ số cao nhất của đa thức A(x) là 1, hệ số tự do của A(x) là 23.

Hệ số cao nhất của đa thức B(x) là -1, hệ số tự do của B(x) là -9.

b)

N(x) - B(x) = A(x)

N(x) - (-x - 9) = x^2 - 2x + 23

N(x) + x + 9 = x^2 - 2x + 23

N(x) = x^2 - 3x + 14

Vậy, N(x) = x^2 - 3x + 14.

A(x) - M(x) = B(x)

x^2 - 2x + 23 - M(x) = -x - 9

x^2 - 2x + x + 9 + 23 = M(x)

x^2 - x + 32 = M(x)

Vậy, M(x) = x^2 - x + 32.

 

Bình luận (3)
NT
14 tháng 8 2023 lúc 20:23

a: A(x)=3x^2+6-12x-2x^2+4x+17

=x^2-8x+23

B(x)=3x^2-7x+3-3x^2+6x-12=-x-9

Hệ số cao nhất của A(x) là 1

Hệ số tự do của A(x) là 23

Hệ số cao nhất của B(x) là -1

Hệ số tự do của B(x) là -9

b: N(x)=A(x)+B(x)

=x^2-8x+23-x-9

=x^2-9x+14

M(x)=A(x)-B(x)

=x^2-8x+23+x+9

=x^2-7x+32

Bình luận (0)
CV
Xem chi tiết
HT
20 tháng 7 2018 lúc 19:14

\(E\left(x\right)=f\left(x\right)\)

\(\Leftrightarrow x^2+\left(m+2\right)x+n=x^2-3x+5\)

\(\Leftrightarrow\hept{\begin{cases}m+2=-3\\n=5\end{cases}\Leftrightarrow\hept{\begin{cases}m=-5\\n=5\end{cases}}}\)

Vậy với m=-5,n=5 thì \(E\left(x\right)=f\left(x\right)\)

Bình luận (0)
CN
Xem chi tiết
NT
15 tháng 5 2022 lúc 21:47

a: \(M\left(x\right)=9x^4+2x^2-x-6\)

\(N\left(x\right)=-x^4-x^3-2x^2+4x+1\)

b: \(P\left(x\right)=8x^4-x^3+3x-5\)

\(Q\left(x\right)=10x^4+x^3+4x^2-5x-7\)

Bình luận (1)
LC
Xem chi tiết
PN
Xem chi tiết
H24
18 tháng 5 2022 lúc 7:48

a. M(x) + N(x) = 6x– 2x2 + 3x +10 - 6x3 + x2 – 6x -10

= (6x3 - 6x3 ) + ( -2x2 + x2 ) + ( 3x - 6x ) + ( 10 - 10 )

= -x2 - 3x 

M(x) - N(x) = 6x– 2x2 + 3x +10 - ( –6x3 + x2 – 6x -10)

= 6x– 2x2 + 3x +10 + 6x3 - x2 + 6x +10

= (6x3 + 6x3 ) + ( -2x2 - x2 ) + ( 3x + 6x) + ( 10 + 10)

= 12x3 - 3x2 + 9x + 20

b. Đặt -x2 - 3x  = 0

=> -x2 + (-3)x = 0

=> -x2 + 3.-x = 0

=> -x(-x+ 3) = 0

=>\(\left[{}\begin{matrix}-x=0\\-x+3=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\-x=-3\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

Vậy nghiệm của đa thức trên là 0 hoặc -3

Bình luận (0)
N7
18 tháng 5 2022 lúc 7:49

a) M(X) + N(x)= (6x– 2x2 + 3x +10)

+ (–6x3 + x2 – 6x -10)

M(x) + N(x)=  – x2 - 3x.

M(x) + N(x)= (6x– 2x2 + 3x +10)

- (–6x3 + x2 – 6x -10)

M(x) - N(x)= 12x3 - x2 + 9x + 20.

b) Nghiệm của M(x) + N(x)= x= 0, -3.

Bình luận (0)
NA
Xem chi tiết
NA
Xem chi tiết
NT
7 tháng 4 2021 lúc 13:58

a) Ta có: \(M\left(x\right)=3x^3+x^2+4x^4-x-3x^3+5x^4+2x^2-6\)

\(=\left(4x^4+5x^4\right)+\left(3x^3-3x^3\right)+\left(x^2+2x^2\right)-x-6\)

\(=9x^4+3x^2-x-6\)

Ta có: \(N\left(x\right)=-2x^2-x^4+4x^3-x^2-5x^3+3x+5+x\)

\(=-x^4+\left(4x^3-5x^3\right)+\left(-2x^2-x^2\right)+\left(3x+x\right)+5\)

\(=-x^4-x^3-3x^2+4x+5\)

c) Ta có: M(x)+N(x)

\(=9x^4+3x^2-x-6-x^4-x^3-3x^2+4x+5\)

\(=8x^4-x^3+3x-1\)

Bình luận (0)