Cho tam giác ABC nhọn, BD và CE là hai đường cao. Các điểm M,N trên các đoạn BD,CE; góc AMB=góc ANB=90độ. Chứng minh tam giác AMN cân (hình mình vẽ rồi)
cho tam giác ABC nhọn, BD và CE là hai đường cao. Các điểm M, N nằm trên các đường thẳng CE và BD sao cho góc AMB = góc ANC = 90 độ. Chứng minh tam giác AMN cân
Bạn tham khảo lời giải trong đương link phía dưới nhé:
Câu hỏi của Thanh Thủy - Toán lớp 9 - Học toán với OnlineMath
cho ΔABC nhọn BD và CE là hai đường cao. Các điểm M,N trên các đoạn BD, CE sao cho góc AMC = góc ANB=90. Cm tam giác AMN cân
Cho tam giác ABC nhọn, hai đường cao BD và CE cắt nhau tại H. Vẽ hai điểm M và N là hai điểm tương ứng trên các đoạn HB; HC sao cho AMC=ANB=90 độ. CMR: AMN=ANM
Ta có: \(\Delta AMC\) vuông tại M có \(MD\bot AC\Rightarrow AM^2=AD.AC\left(1\right)\)
\(\Delta ANB\) vuông tại Ncó \(NE\bot AB\Rightarrow AN^2=AE.AB\left(2\right)\)
Ta có: \(\angle BEC=\angle BDC=90\Rightarrow BCDE\) nội tiếp \(\Rightarrow\angle ADE=\angle ABC\)
Xét \(\Delta ADE\) và \(\Delta ABC:\) Ta có: \(\left\{{}\begin{matrix}\angle BACchung\\\angle ADE=\angle ABC\end{matrix}\right.\)
\(\Rightarrow\Delta ADE\sim\Delta ABC\left(g-g\right)\Rightarrow\dfrac{AD}{AB}=\dfrac{AE}{AC}\Rightarrow AD.AC=AE.AB\left(3\right)\)
Từ (1),(2) và (3) \(\Rightarrow AM^2=AN^2\Rightarrow AM=AN\Rightarrow\Delta AMN\) cân tại A
\(\Rightarrow\angle AMN=\angle ANM\)
Cho tam giác ABC có các góc đều nhọn. Đường cao BD, CEcắt nhau tại H. Trên các đoạn thẳng BD và CE lấy lần lượt hai điểm M và N sao cho góc A MC =ANC = 90°. Chứng minh rằng AM = AN
Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc A chung
=>ΔADB đồng dạng với ΔAEC
=>AD/AE=AB/AC
=>AD*AC=AE*AB
ΔANB vuông tại N có NE vuông góc AB
nên AN^2=AE*AB
ΔAMC vuông tại M có MD vuông góc AC
nên AM^2=AD*AC
=>AN=AM
cho tam giác ABC có 3 góc nhọn . các đường cao BD ,CE cắt nhau tại H
1/ CMR : tam giác ADB ∞ tam giác AEC
2/ CMR : HB.HD=HC.HE
3/ trên các đoạn thẳng BD và CE lấy lần lượt 2 điểm M , N sao cho ∠AMC =∠ANB = 90o .CMR: AM=AN
1: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc DAB chung
=>ΔADB đồng dạng với ΔAEC
2: Xet ΔHEB vuông tại E và ΔHDC vuông tại D có
góc EHB=góc DHC
=>ΔHEB đồng dạng với ΔHDC
=>HE/HD=HB/HC
=>HE*HC=HB*HD
3: ΔAMC vuông tại M có MD vuông góc AC
nên AD*AC=AM^2
ΔANB vuông tại N có NE vuông góc AB
nên AE*AB=AN^2
=>AM=AN
Cho tam giác nhọn ABC vớ BD, CE là hai đường cao. Các điểm M,N trên cac đường thẳng CE, BD sao cho \(\widehat{AMB}=\widehat{ANC}=90^o\). Chứng minh rằng tam giác AMN cân
Cho tam giác ABC nhọn, BD là CE là hai đường cao , các điểm N,M trên các đường thẳng BD, CE sao cho góc AMB=góc ANC=90độ.
CMR: TAM GIÁC AMN CÂN
bạn nào biết thi giup mình nke. cam ơn nhiu nhiu
b nào bít thi giup nke. mình dang cần gấp!!!
Cho tam giác ABC nhọn BD , CE là 2 đường cao . Các điểm N,M trên các đường thẳng BD,CE sao cho góc AMB = góc ANC = 90o . CM tam giác AMN cân.
cho tam giác ABC nhọn các đường cao BD và CE cắt nhau tại H
1 chứng minh tam giác ABC ffongf dạng với tam giác ACE và AB.AE=AC.AD
2 chứng minh góc ADE \ góc ABC
3 trên các đoạn thẳng BD và CE lấy lần lượt hai điểm M và N sao cho góc AMC = goác ANB = 90 đọ . Chứng minh AM2 = AC,AD và AM \ AN
cho tam giác ABC nhọn. Các đường cao BD và CE cắt nhau tai H.
a) tam giác ABD đồng dạng tam giác ACE
b) HB.HD= HC.HE
c) góc ADE= góc ABC
d) Trên các đoạn BD và CE lấy M và N sao cho góc AMC= góc ANB = 90 độ
mình làm được câu a, b, c rồi các bạn giúp mình câu d nhé thank