Những câu hỏi liên quan
MN
Xem chi tiết
AH
28 tháng 3 2021 lúc 21:09

Lời giải:

$\frac{u_{n-1}}{u_n}=\frac{n^2}{n^2-1}>0$ với mọi $n\geq 2$ nên $u_{n-1}, u_n$ luôn cùng dấu.

Mà $u_1=2017>0$ nên $u_n>0$ với mọi $n=1,2,...$

Mặt khác:

$n^2(u_{n-1}-u_n)=u_{n-1}>0\Rightarrow u_{n-1}>u_n$ nên dãy $(u_n)$ là dãy giảm.

Dãy giảm và bị chặn dưới nên $u_n$ hội tụ. Đặt $\lim u_n=a$. 

Ta có: $a=n^2(a-a)\Rightarrow a=0$

Vậy $\lim u_n=0$

 

Bình luận (0)
PB
Xem chi tiết
CT
9 tháng 11 2019 lúc 17:26

Bình luận (0)
PB
Xem chi tiết
CT
7 tháng 12 2017 lúc 3:52

Chọn B.

Ta có: u1 = 1; u2 = 3/2; u3 = 17/6; u4 = 227/34.

Ta chứng minh un > 0 bằng quy nạp.

Giả sử un > 0, khi đó: 

Nên .

Bình luận (0)
PB
Xem chi tiết
CT
9 tháng 7 2019 lúc 3:12

Bình luận (0)
PB
Xem chi tiết
CT
14 tháng 1 2017 lúc 8:36

Chọn A

Phương pháp:

Cách giải: Ta có:

u n + 1 = n = - 4 ( u n + n - 1 )

⇔ u n + 1 + n = - 4 ( u n + n - 1 )

⇔ v n = u n + n - 1 v n + 1 = - 4 v n

Dãy ( v n )  là cấp số nhân với công bội -4 và  v 1 = u 1 + 0 = 2

S = u 2018 - 2 u 2017

= v 2018 - 2 v 2017 + 2015

= 2015 - 3 . 4 2017

Bình luận (0)
PB
Xem chi tiết
CT
19 tháng 6 2017 lúc 3:17

Đáp án A

Ta có:

u n + 1 + 4 u n = 4 − 5 n ⇔ u n + 1 = − 4 u n − 5 n + 4 ⇔ u n + 1 + n = − 4 u n + n − 1    * .  

Đặt v n + 1 = u n + 1 + n suy ra v n = u n + n − 1 , khi đó * ⇔ v n + 1 = − 4 v n  

Do đó v n là cấp số nhân với công bội  q = − 4 ⇒ v n = − 4 n − 1 v 1

Mà v 1 = u 1 = 2 nên suy ra  v n = 2. − 4 n − 1 → u n = 2. − 4 n − 1 − n + 1

Vậy:

S = u 2018 − 2 u 2017 = 2. − 4 2017 − 2017 − 2 2. − 4 2016 − 2016 = 2015 − 3.4 2017 .

Bình luận (0)
PB
Xem chi tiết
CT
10 tháng 8 2017 lúc 12:42

Chọn A.

Phương pháp:

Cách giải: Ta có:

Bình luận (0)
PB
Xem chi tiết
CT
22 tháng 4 2017 lúc 4:43

Đáp án A

Bình luận (0)
MN
Xem chi tiết
H24
Xem chi tiết
H24
30 tháng 8 2023 lúc 19:54

a) Để tính các số hạng u1, u2, u3, u4 của dãy (un), ta thay n = 1, 2, 3, 4 vào công thức un = n^2 - 1:

u1 = 1^2 - 1 = 0 u2 = 2^2 - 1 = 3 u3 = 3^2 - 1 = 8 u4 = 4^2 - 1 = 15

Vậy u1 = 0, u2 = 3, u3 = 8, u4 = 15.

b) Để tìm số hạng thứ mấy trong dãy có giá trị 99, ta giải phương trình n^2 - 1 = 99:

n^2 - 1 = 99 n^2 = 100 n = 10 hoặc n = -10

Vì số hạng của dãy phải là số tự nhiên nên ta chọn n = 10. Vậy số hạng thứ mấy có giá trị 99 là u10.

a) Để tính các số hạng u1, u2, u3, u4 của dãy (un), ta thay n = 1, 2, 3, 4 vào công thức un = (2n - 1)/(n + 1):

u1 = (21 - 1)/(1 + 1) = 1/2 u2 = (22 - 1)/(2 + 1) = 3/3 = 1 u3 = (23 - 1)/(3 + 1) = 5/4 u4 = (24 - 1)/(4 + 1) = 7/5

Vậy u1 = 1/2, u2 = 1, u3 = 5/4, u4 = 7/5.

b) Để tìm số hạng thứ mấy trong dãy có giá trị 137137, ta giải phương trình (2n - 1)/(n + 1) = 137137:

(2n - 1)/(n + 1) = 137137 2n - 1 = 137137(n + 1) 2n - 1 = 137137n + 137137 137135n = 137138 n = 1

Vậy số hạng thứ mấy có giá trị 137137 là u1.

Bình luận (0)
NT
30 tháng 8 2023 lúc 21:24

loading...loading...

Bình luận (0)